The continuously infinite group ∞1 is omitted.
| Coordinates | Seitz symbol | 
|---|---|
| a, b, c | x, y, z | { 1 ‖ 1 | 0 } | 
| a-b, a, c | x, y, z | { 1 ‖ 6+001 | 0 } | 
| -b, a-b, c | x, y, z | { 1 ‖ 3+001 | 0 } | 
| -a, -b, c | x, y, z | { 1 ‖ 2001 | 0 } | 
| -a+b, -a, c | x, y, z | { 1 ‖ 3-001 | 0 } | 
| b, -a+b, c | x, y, z | { 1 ‖ 6-001 | 0 } | 
| a-b, -b, -c | -x, -y, -z | { -1 ‖ 2100 | 0 } | 
| b, a, -c | -x, -y, -z | { -1 ‖ 2110 | 0 } | 
| -a, -a+b, -c | -x, -y, -z | { -1 ‖ 2010 | 0 } | 
| a, a-b, -c | -x, -y, -z | { -1 ‖ 2210 | 0 } | 
| -a+b, b, -c | -x, -y, -z | { -1 ‖ 2120 | 0 } | 
| -b, -a, -c | -x, -y, -z | { -1 ‖ 21-10 | 0 } | 
| a, b, c | -x, y, z | { m ‖ 1 | 0 } | 
| a-b, a, c | -x, y, z | { m ‖ 6+001 | 0 } | 
| -b, a-b, c | -x, y, z | { m ‖ 3+001 | 0 } | 
| -a, -b, c | -x, y, z | { m ‖ 2001 | 0 } | 
| -a+b, -a, c | -x, y, z | { m ‖ 3-001 | 0 } | 
| b, -a+b, c | -x, y, z | { m ‖ 6-001 | 0 } | 
| a-b, -b, -c | x, -y, -z | { 2 ‖ 2100 | 0 } | 
| b, a, -c | x, -y, -z | { 2 ‖ 2110 | 0 } | 
| -a, -a+b, -c | x, -y, -z | { 2 ‖ 2010 | 0 } | 
| a, a-b, -c | x, -y, -z | { 2 ‖ 2210 | 0 } | 
| -a+b, b, -c | x, -y, -z | { 2 ‖ 2120 | 0 } | 
| -b, -a, -c | x, -y, -z | { 2 ‖ 21-10 | 0 } | 
| WP | Site symmetry | Representative | 
|---|---|---|
| 1a | $\ce{^{1}{6}}\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (0,0,0 | 0,0,0) | 
| 1b | $\ce{^{1}{6}}\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (0,0,1/2 | 0,0,0) | 
| 2c | $\ce{^{1}{3}}.\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (1/3,2/3,0 | 0,0,0) | 
| 2d | $\ce{^{1}{3}}.\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (1/3,2/3,1/2 | 0,0,0) | 
| 2e | $\ce{^{1}{6}}..\ce{^{\infty m}{1}} $ | (0,0,c | 0,0,z) | 
| 3f | $\ce{^{1}{2}}\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (1/2,0,0 | 0,0,0) | 
| 3g | $\ce{^{1}{2}}\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (1/2,0,1/2 | 0,0,0) | 
| 4h | $\ce{^{1}{3}}..\ce{^{\infty m}{1}} $ | (1/3,2/3,c | 0,0,z) | 
| 6i | $\ce{^{1}{2}}..\ce{^{\infty m}{1}} $ | (1/2,0,c | 0,0,z) | 
| 6j | $.\ce{^{-1}{2}}.\ce{^{\infty m}{1}} $ | (a,0,0 | 0,0,0) | 
| 6k | $.\ce{^{-1}{2}}.\ce{^{\infty m}{1}} $ | (a,0,1/2 | 0,0,0) | 
| 6l | $..\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (a,-a,0 | 0,0,0) | 
| 6m | $..\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (a,-a,1/2 | 0,0,0) | 
| 12n | $\ce{^{1}{1}}\ce{^{\infty m}{1}} $ | (a,b,c | 0,0,z) | 
| Wavevector-k | Little co-group | 
|---|---|
| A:(0,0,1/2) | $\ce{^{1}{6}}\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | 
| Γ:(0,0,0) | $\ce{^{1}{6}}\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | 
| H:(1/3,1/3,1/2) | $\ce{^{m}{6}}\ce{^{2}{2}}\ce{^{-1}{2}}\ce{^{\infty}{1}} $ | 
| K:(1/3,1/3,0) | $\ce{^{m}{6}}\ce{^{2}{2}}\ce{^{-1}{2}}\ce{^{\infty}{1}} $ | 
| L:(1/2,0,1/2) | $\ce{^{2}{2}}\ce{^{2}{2}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | 
| M:(1/2,0,0) | $\ce{^{2}{2}}\ce{^{2}{2}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | 
| Δ:(0,0,w) | $\ce{^{1}{6}}\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{\infty}{1}} $ | 
| P:(1/3,1/3,w) | $\ce{^{1}{3}}\ce{^{1}{1}}\ce{^{-1}{2}}\ce{^{\infty}{1}} $ | 
| Λ:(u,u,0) | $\ce{^{-1}{2}}\ce{^{2}{2}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ | 
| Σ:(u,0,0) | $\ce{^{2}{2}}\ce{^{-1}{2}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ | 
| Q:(u,u,1/2) | $\ce{^{-1}{2}}\ce{^{2}{2}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ | 
| R:(u,0,1/2) | $\ce{^{2}{2}}\ce{^{-1}{2}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ | 
| U:(1/2,0,w) | $\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{1}{2}}\ce{^{\infty}{1}} $ | 
| B:(u,v,0) | $\ce{^{m}{2}}\ce{^{\infty}{1}} $ | 
| C:(u,u,w) | $\ce{^{-1}{2}}\ce{^{\infty}{1}} $ | 
| D:(u,0,w) | $\ce{^{-1}{2}}\ce{^{\infty}{1}} $ | 
| E:(u,v,1/2) | $\ce{^{m}{2}}\ce{^{\infty}{1}} $ | 
| GP:(u,v,w) | $\ce{^{1}{1}}\ce{^{\infty}{1}}$ | 
Spin Brillouin Zone
 
                    6/mmmP
| k-vector | k-vector-G↑ | A↑G(2) | |
| Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2) $ | |
| A:(0,0,1/2) | A:(0,0,1/2) | $A_{1}^{S}(2) $ | |
| H:(1/3,1/3,1/2) | H:(1/3,1/3,1/2) | $H_{1}^{S}(2) $ | |
| K:(1/3,1/3,0) | K:(1/3,1/3,0) | $K_{1}^{S}(2) $ | |
| L:(1/2,0,1/2) | L:(1/2,0,1/2) | $L_{1}^{S}(2) $ | |
| M:(1/2,0,0) | M:(1/2,0,0) | $M_{1}^{S}(2) $ | |
| Δ:(0,0,w) | Δ:(0,0,w) | $Δ_{1}^{S}(2) $ | |
| Λ:(u,u,0) | Λ:(u,u,0) | $Λ_{1}^{S}(2) $ | |
| P:(1/3,1/3,w) | P:(1/3,1/3,w) | $P_{1}^{S}(2) $ | |
| Q:(u,u,1/2) | Q:(u,u,1/2) | $Q_{1}^{S}(2) $ | |
| R:(u,0,1/2) | R:(u,0,1/2) | $R_{1}^{S}(2) $ | |
| Σ:(u,0,0) | Σ:(u,0,0) | $Σ_{1}^{S}(2) $ | |
| U:(1/2,0,w) | U:(1/2,0,w) | $U_{1}^{S}(2) $ | |
| B:(u,v,0) | B:(u,v,0) | $2 B_{1}^{S}(1)$ | Spin Splitting | 
| C:(u,u,w) | C:(u,u,w) | $C_{1}^{S}(2) $ | |
| D:(u,0,w) | D:(u,0,w) | $D_{1}^{S}(2) $ | |
| E:(u,v,1/2) | E:(u,v,1/2) | $2 E_{1}^{S}(1)$ | Spin Splitting | 
| GP:(u,v,w) | GP:(u,v,w) | $2 GP_{1}^{S}(1)$ | Spin Splitting | 
| k-vector | k-vector-G↑ | A1↑G(4) | |
| Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2)⊕Γ_{2}^{S}(2) $ | |
| A:(0,0,1/2) | A:(0,0,1/2) | $A_{1}^{S}(2)⊕A_{2}^{S}(2) $ | |
| H:(1/3,1/3,1/2) | H:(1/3,1/3,1/2) | $H_{2}^{S}H_{3}^{S}(4) $ | |
| K:(1/3,1/3,0) | K:(1/3,1/3,0) | $K_{2}^{S}K_{3}^{S}(4) $ | |
| L:(1/2,0,1/2) | L:(1/2,0,1/2) | $L_{1}^{S}(2)⊕L_{2}^{S}(2) $ | |
| M:(1/2,0,0) | M:(1/2,0,0) | $M_{1}^{S}(2)⊕M_{2}^{S}(2) $ | |
| Δ:(0,0,w) | Δ:(0,0,w) | $Δ_{1}^{S}(2)⊕Δ_{2}^{S}(2) $ | |
| Λ:(u,u,0) | Λ:(u,u,0) | $2Λ_{1}^{S}(2) $ | |
| P:(1/3,1/3,w) | P:(1/3,1/3,w) | $P_{2}^{S}(2)⊕P_{3}^{S}(2) $ | |
| Q:(u,u,1/2) | Q:(u,u,1/2) | $2Q_{1}^{S}(2) $ | |
| R:(u,0,1/2) | R:(u,0,1/2) | $2R_{1}^{S}(2) $ | |
| Σ:(u,0,0) | Σ:(u,0,0) | $2Σ_{1}^{S}(2) $ | |
| U:(1/2,0,w) | U:(1/2,0,w) | $U_{1}^{S}(2)⊕U_{2}^{S}(2) $ | |
| B:(u,v,0) | B:(u,v,0) | $4B_{1}^{S}(1)$ | Spin Splitting | 
| C:(u,u,w) | C:(u,u,w) | $2C_{1}^{S}(2) $ | |
| D:(u,0,w) | D:(u,0,w) | $2D_{1}^{S}(2) $ | |
| E:(u,v,1/2) | E:(u,v,1/2) | $4E_{1}^{S}(1)$ | Spin Splitting | 
| GP:(u,v,w) | GP:(u,v,w) | $4GP_{1}^{S}(1)$ | Spin Splitting | 
| k-vector | k-vector-G↑ | A↑G(6) | |
| Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2)⊕Γ_{3}^{S}Γ_{5}^{S}(4) $ | |
| A:(0,0,1/2) | A:(0,0,1/2) | $A_{1}^{S}(2)⊕A_{3}^{S}A_{5}^{S}(4) $ | |
| H:(1/3,1/3,1/2) | H:(1/3,1/3,1/2) | $H_{1}^{S}(2)⊕H_{2}^{S}H_{3}^{S}(4) $ | |
| K:(1/3,1/3,0) | K:(1/3,1/3,0) | $K_{1}^{S}(2)⊕K_{2}^{S}K_{3}^{S}(4) $ | |
| L:(1/2,0,1/2) | L:(1/2,0,1/2) | $L_{1}^{S}(2)⊕2L_{2}^{S}(2) $ | |
| M:(1/2,0,0) | M:(1/2,0,0) | $M_{1}^{S}(2)⊕2M_{2}^{S}(2) $ | |
| Δ:(0,0,w) | Δ:(0,0,w) | $Δ_{1}^{S}(2)⊕Δ_{3}^{S}(2)⊕Δ_{5}^{S}(2) $ | |
| Λ:(u,u,0) | Λ:(u,u,0) | $3Λ_{1}^{S}(2) $ | |
| P:(1/3,1/3,w) | P:(1/3,1/3,w) | $P_{1}^{S}(2)⊕P_{2}^{S}(2)⊕P_{3}^{S}(2) $ | |
| Q:(u,u,1/2) | Q:(u,u,1/2) | $3Q_{1}^{S}(2) $ | |
| R:(u,0,1/2) | R:(u,0,1/2) | $3R_{1}^{S}(2) $ | |
| Σ:(u,0,0) | Σ:(u,0,0) | $3Σ_{1}^{S}(2) $ | |
| U:(1/2,0,w) | U:(1/2,0,w) | $U_{1}^{S}(2)⊕2U_{2}^{S}(2) $ | |
| B:(u,v,0) | B:(u,v,0) | $6B_{1}^{S}(1)$ | Spin Splitting | 
| C:(u,u,w) | C:(u,u,w) | $3C_{1}^{S}(2) $ | |
| D:(u,0,w) | D:(u,0,w) | $3D_{1}^{S}(2) $ | |
| E:(u,v,1/2) | E:(u,v,1/2) | $6E_{1}^{S}(1)$ | Spin Splitting | 
| GP:(u,v,w) | GP:(u,v,w) | $6GP_{1}^{S}(1)$ | Spin Splitting | 
| k-vector | k-vector-G↑ | A↑G(12) | |
| Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2)⊕Γ_{2}^{S}(2)⊕Γ_{3}^{S}Γ_{5}^{S}(4)⊕Γ_{4}^{S}Γ_{6}^{S}(4) $ | |
| A:(0,0,1/2) | A:(0,0,1/2) | $A_{1}^{S}(2)⊕A_{2}^{S}(2)⊕A_{3}^{S}A_{5}^{S}(4)⊕A_{4}^{S}A_{6}^{S}(4) $ | |
| H:(1/3,1/3,1/2) | H:(1/3,1/3,1/2) | $2H_{1}^{S}(2)⊕2H_{2}^{S}H_{3}^{S}(4) $ | |
| K:(1/3,1/3,0) | K:(1/3,1/3,0) | $2K_{1}^{S}(2)⊕2K_{2}^{S}K_{3}^{S}(4) $ | |
| L:(1/2,0,1/2) | L:(1/2,0,1/2) | $3L_{1}^{S}(2)⊕3L_{2}^{S}(2) $ | |
| M:(1/2,0,0) | M:(1/2,0,0) | $3M_{1}^{S}(2)⊕3M_{2}^{S}(2) $ | |
| Δ:(0,0,w) | Δ:(0,0,w) | $Δ_{1}^{S}(2)⊕Δ_{2}^{S}(2)⊕Δ_{3}^{S}(2)⊕Δ_{4}^{S}(2)⊕Δ_{5}^{S}(2)⊕Δ_{6}^{S}(2) $ | |
| Λ:(u,u,0) | Λ:(u,u,0) | $6Λ_{1}^{S}(2) $ | |
| P:(1/3,1/3,w) | P:(1/3,1/3,w) | $2P_{1}^{S}(2)⊕2P_{2}^{S}(2)⊕2P_{3}^{S}(2) $ | |
| Q:(u,u,1/2) | Q:(u,u,1/2) | $6Q_{1}^{S}(2) $ | |
| R:(u,0,1/2) | R:(u,0,1/2) | $6R_{1}^{S}(2) $ | |
| Σ:(u,0,0) | Σ:(u,0,0) | $6Σ_{1}^{S}(2) $ | |
| U:(1/2,0,w) | U:(1/2,0,w) | $3U_{1}^{S}(2)⊕3U_{2}^{S}(2) $ | |
| B:(u,v,0) | B:(u,v,0) | $12B_{1}^{S}(1)$ | Spin Splitting | 
| C:(u,u,w) | C:(u,u,w) | $6C_{1}^{S}(2) $ | |
| D:(u,0,w) | D:(u,0,w) | $6D_{1}^{S}(2) $ | |
| E:(u,v,1/2) | E:(u,v,1/2) | $12E_{1}^{S}(1)$ | Spin Splitting | 
| GP:(u,v,w) | GP:(u,v,w) | $12GP_{1}^{S}(1)$ | Spin Splitting |