The continuously infinite group ∞1 is omitted.
Coordinates | Seitz symbol |
---|---|
a, b, c | x, y, z | { 1 ‖ 1 | 0 } |
a, -b, -c | x, y, z | { 1 ‖ 2100 | 0 } |
-a, b, -c | x, y, z | { 1 ‖ 2010 | 0 } |
-a, -b, c | x, y, z | { 1 ‖ 2001 | 0 } |
c, a, b | x, y, z | { 1 ‖ 3+111 | 0 } |
b, c, a | x, y, z | { 1 ‖ 3-111 | 0 } |
-b, c, -a | x, y, z | { 1 ‖ 3-1-1-1 | 0 } |
-c, -a, b | x, y, z | { 1 ‖ 3+1-1-1 | 0 } |
-b, -c, a | x, y, z | { 1 ‖ 3--11-1 | 0 } |
c, -a, -b | x, y, z | { 1 ‖ 3+-11-1 | 0 } |
b, -c, -a | x, y, z | { 1 ‖ 3--1-11 | 0 } |
-c, a, -b | x, y, z | { 1 ‖ 3+-1-11 | 0 } |
-a, -b, -c | x, y, z | { 1 ‖ -1 | 0 } |
-a, b, c | x, y, z | { 1 ‖ m100 | 0 } |
a, -b, c | x, y, z | { 1 ‖ m010 | 0 } |
a, b, -c | x, y, z | { 1 ‖ m001 | 0 } |
-c, -a, -b | x, y, z | { 1 ‖ -3+111 | 0 } |
-b, -c, -a | x, y, z | { 1 ‖ -3-111 | 0 } |
b, -c, a | x, y, z | { 1 ‖ -3-1-1-1 | 0 } |
c, a, -b | x, y, z | { 1 ‖ -3+1-1-1 | 0 } |
b, c, -a | x, y, z | { 1 ‖ -3--11-1 | 0 } |
-c, a, b | x, y, z | { 1 ‖ -3+-11-1 | 0 } |
-b, c, a | x, y, z | { 1 ‖ -3--1-11 | 0 } |
c, -a, b | x, y, z | { 1 ‖ -3+-1-11 | 0 } |
a, -c, b | -x, -y, -z | { -1 ‖ 4+100 | 0 } |
a, c, -b | -x, -y, -z | { -1 ‖ 4-100 | 0 } |
c, b, -a | -x, -y, -z | { -1 ‖ 4+010 | 0 } |
-c, b, a | -x, -y, -z | { -1 ‖ 4-010 | 0 } |
-b, a, c | -x, -y, -z | { -1 ‖ 4+001 | 0 } |
b, -a, c | -x, -y, -z | { -1 ‖ 4-001 | 0 } |
b, a, -c | -x, -y, -z | { -1 ‖ 2110 | 0 } |
-b, -a, -c | -x, -y, -z | { -1 ‖ 21-10 | 0 } |
-a, c, b | -x, -y, -z | { -1 ‖ 2011 | 0 } |
-a, -c, -b | -x, -y, -z | { -1 ‖ 201-1 | 0 } |
c, -b, a | -x, -y, -z | { -1 ‖ 2101 | 0 } |
-c, -b, -a | -x, -y, -z | { -1 ‖ 2-101 | 0 } |
-a, c, -b | -x, -y, -z | { -1 ‖ -4+100 | 0 } |
-a, -c, b | -x, -y, -z | { -1 ‖ -4-100 | 0 } |
-c, -b, a | -x, -y, -z | { -1 ‖ -4+010 | 0 } |
c, -b, -a | -x, -y, -z | { -1 ‖ -4-010 | 0 } |
b, -a, -c | -x, -y, -z | { -1 ‖ -4+001 | 0 } |
-b, a, -c | -x, -y, -z | { -1 ‖ -4-001 | 0 } |
-b, -a, c | -x, -y, -z | { -1 ‖ m110 | 0 } |
b, a, c | -x, -y, -z | { -1 ‖ m1-10 | 0 } |
a, -c, -b | -x, -y, -z | { -1 ‖ m011 | 0 } |
a, c, b | -x, -y, -z | { -1 ‖ m01-1 | 0 } |
-c, b, -a | -x, -y, -z | { -1 ‖ m101 | 0 } |
c, b, a | -x, -y, -z | { -1 ‖ m-101 | 0 } |
a, b, c | -x, y, z | { m ‖ 1 | 0 } |
a, -b, -c | -x, y, z | { m ‖ 2100 | 0 } |
-a, b, -c | -x, y, z | { m ‖ 2010 | 0 } |
-a, -b, c | -x, y, z | { m ‖ 2001 | 0 } |
c, a, b | -x, y, z | { m ‖ 3+111 | 0 } |
b, c, a | -x, y, z | { m ‖ 3-111 | 0 } |
-b, c, -a | -x, y, z | { m ‖ 3-1-1-1 | 0 } |
-c, -a, b | -x, y, z | { m ‖ 3+1-1-1 | 0 } |
-b, -c, a | -x, y, z | { m ‖ 3--11-1 | 0 } |
c, -a, -b | -x, y, z | { m ‖ 3+-11-1 | 0 } |
b, -c, -a | -x, y, z | { m ‖ 3--1-11 | 0 } |
-c, a, -b | -x, y, z | { m ‖ 3+-1-11 | 0 } |
-a, -b, -c | -x, y, z | { m ‖ -1 | 0 } |
-a, b, c | -x, y, z | { m ‖ m100 | 0 } |
a, -b, c | -x, y, z | { m ‖ m010 | 0 } |
a, b, -c | -x, y, z | { m ‖ m001 | 0 } |
-c, -a, -b | -x, y, z | { m ‖ -3+111 | 0 } |
-b, -c, -a | -x, y, z | { m ‖ -3-111 | 0 } |
b, -c, a | -x, y, z | { m ‖ -3-1-1-1 | 0 } |
c, a, -b | -x, y, z | { m ‖ -3+1-1-1 | 0 } |
b, c, -a | -x, y, z | { m ‖ -3--11-1 | 0 } |
-c, a, b | -x, y, z | { m ‖ -3+-11-1 | 0 } |
-b, c, a | -x, y, z | { m ‖ -3--1-11 | 0 } |
c, -a, b | -x, y, z | { m ‖ -3+-1-11 | 0 } |
a, -c, b | x, -y, -z | { 2 ‖ 4+100 | 0 } |
a, c, -b | x, -y, -z | { 2 ‖ 4-100 | 0 } |
c, b, -a | x, -y, -z | { 2 ‖ 4+010 | 0 } |
-c, b, a | x, -y, -z | { 2 ‖ 4-010 | 0 } |
-b, a, c | x, -y, -z | { 2 ‖ 4+001 | 0 } |
b, -a, c | x, -y, -z | { 2 ‖ 4-001 | 0 } |
b, a, -c | x, -y, -z | { 2 ‖ 2110 | 0 } |
-b, -a, -c | x, -y, -z | { 2 ‖ 21-10 | 0 } |
-a, c, b | x, -y, -z | { 2 ‖ 2011 | 0 } |
-a, -c, -b | x, -y, -z | { 2 ‖ 201-1 | 0 } |
c, -b, a | x, -y, -z | { 2 ‖ 2101 | 0 } |
-c, -b, -a | x, -y, -z | { 2 ‖ 2-101 | 0 } |
-a, c, -b | x, -y, -z | { 2 ‖ -4+100 | 0 } |
-a, -c, b | x, -y, -z | { 2 ‖ -4-100 | 0 } |
-c, -b, a | x, -y, -z | { 2 ‖ -4+010 | 0 } |
c, -b, -a | x, -y, -z | { 2 ‖ -4-010 | 0 } |
b, -a, -c | x, -y, -z | { 2 ‖ -4+001 | 0 } |
-b, a, -c | x, -y, -z | { 2 ‖ -4-001 | 0 } |
-b, -a, c | x, -y, -z | { 2 ‖ m110 | 0 } |
b, a, c | x, -y, -z | { 2 ‖ m1-10 | 0 } |
a, -c, -b | x, -y, -z | { 2 ‖ m011 | 0 } |
a, c, b | x, -y, -z | { 2 ‖ m01-1 | 0 } |
-c, b, -a | x, -y, -z | { 2 ‖ m101 | 0 } |
c, b, a | x, -y, -z | { 2 ‖ m-101 | 0 } |
WP | Site symmetry | Representative |
---|---|---|
1a | $\ce{^{1}{m}}\ce{^{1}{-3}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (0,0,0 | 0,0,0) |
1b | $\ce{^{1}{m}}\ce{^{1}{-3}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (1/2,1/2,1/2 | 0,0,0) |
3c | $\ce{^{-1}{4}}/\ce{^{1}{m}}\ce{^{1}{m}}.\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (0,1/2,1/2 | 0,0,0) |
3d | $\ce{^{-1}{4}}/\ce{^{1}{m}}\ce{^{1}{m}}.\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (1/2,0,0 | 0,0,0) |
6e | $\ce{^{-1}{4}}\ce{^{1}{m}}.\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (a,0,0 | 0,0,0) |
6f | $\ce{^{-1}{4}}\ce{^{1}{m}}.\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (a,1/2,1/2 | 0,0,0) |
8g | $.\ce{^{1}{3}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (a,a,a | 0,0,0) |
12h | $\ce{^{1}{2}}\ce{^{1}{m}}\ce{^{1}{m}}..\ce{^{\infty m}{1}} $ | (a,1/2,0 | 0,0,z) |
12i | $\ce{^{1}{m}}.\ce{^{-1}{2}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (0,b,b | 0,0,0) |
12j | $\ce{^{1}{m}}.\ce{^{-1}{2}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (1/2,b,b | 0,0,0) |
24k | $\ce{^{1}{m}}..\ce{^{\infty m}{1}} $ | (0,b,c | 0,0,z) |
24l | $\ce{^{1}{m}}..\ce{^{\infty m}{1}} $ | (1/2,b,c | 0,0,z) |
24m | $..\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (a,a,c | 0,0,0) |
48n | $\ce{^{1}{1}}\ce{^{\infty m}{1}} $ | (a,b,c | 0,0,z) |
Wavevector-k | Little co-group |
---|---|
Γ:(0,0,0) | $\ce{^{1}{m}}\ce{^{1}{-3}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
R:(1/2,1/2,1/2) | $\ce{^{1}{m}}\ce{^{1}{-3}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
M:(1/2,1/2,0) | $\ce{^{-1}{4/}}\ce{^{1}{m}}\ce{^{1}{m}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
X:(0,1/2,0) | $\ce{^{-1}{4/}}\ce{^{1}{m}}\ce{^{1}{m}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
Δ:(0,v,0) | $\ce{^{2}{4/}}\ce{^{m}{m}}\ce{^{1}{m}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
T:(1/2,1/2,w) | $\ce{^{2}{4/}}\ce{^{m}{m}}\ce{^{1}{m}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
Λ:(u,u,u) | $\ce{^{m}{-3}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
S:(u,1/2,u) | $\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
Σ:(u,u,0) | $\ce{^{2}{m}}\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
Z:(u,1/2,0) | $\ce{^{m}{m}}\ce{^{1}{m}}\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
A:(u,v,0) | $\ce{^{m}{2/}}\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
B:(u,1/2,w) | $\ce{^{m}{2/}}\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
C:(u,u,w) | $\ce{^{-1}{2/}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
GP:(u,v,w) | $\ce{^{m}{-1}}\ce{^{\infty}{1}} $ |
Spin Brillouin Zone
k-vector | k-vector-G↑ | A1↑G(12) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{2}^{S,+}Γ_{3}^{S,+}(4)⊕Γ_{4}^{S,-}(6) $ | |
M:(1/2,1/2,0) | M:(1/2,1/2,0) | $M_{1}^{S,+}(2)⊕M_{2}^{S,+}(2)⊕M_{3}^{S,-}(2)⊕M_{4}^{S,+}(2)⊕2M_{4}^{S,-}(2) $ | |
R:(1/2,1/2,1/2) | R:(1/2,1/2,1/2) | $R_{4}^{S,+}(6)⊕R_{4}^{S,-}(6) $ | |
X:(0,1/2,0) | X:(0,1/2,0) | $2X_{1}^{S,+}(2)⊕X_{2}^{S,+}(2)⊕X_{2}^{S,-}(2)⊕2X_{4}^{S,-}(2) $ | |
Δ:(0,v,0) | Δ:(0,v,0) | $4Δ_{1}^{S}(2)⊕Δ_{3}^{S}(2)⊕Δ_{4}^{S}(2) $ | |
Λ:(u,u,u) | Λ:(u,u,u) | $2Λ_{1}^{S}(2)⊕2Λ_{2}^{S}Λ_{3}^{S}(4) $ | |
S:(u,1/2,u) | S:(u,1/2,u) | $3S_{1}^{S}(2)⊕3S_{2}^{S}(2) $ | |
Σ:(u,u,0) | Σ:(u,u,0) | $5Σ_{1}^{S}(2)⊕Σ_{2}^{S}(2) $ | |
T:(1/2,1/2,w) | T:(1/2,1/2,w) | $T_{1}^{S}(2)⊕T_{2}^{S}(2)⊕2T_{3}^{S}(2)⊕2T_{4}^{S}(2) $ | |
Z:(u,1/2,0) | Z:(u,1/2,0) | $4Z_{1}^{S}(1)⊕2 Z_{3}^{S}(1)⊕6Z_{4}^{S}(1)$ | Spin Splitting |
A:(u,v,0) | A:(u,v,0) | $10A_{1}^{S}(1)⊕2A_{2}^{S}(1)$ | Spin Splitting |
B:(u,1/2,w) | B:(u,1/2,w) | $6B_{1}^{S}(1)⊕6B_{2}^{S}(1)$ | Spin Splitting |
C:(u,u,w) | C:(u,u,w) | $6C_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u,v,w) | $12GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | A'↑G(24) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{2}^{S,+}Γ_{3}^{S,+}(4)⊕Γ_{4}^{S,+}(6)⊕2Γ_{4}^{S,-}(6) $ | |
M:(1/2,1/2,0) | M:(1/2,1/2,0) | $3M_{1}^{S,+}(2)⊕M_{2}^{S,+}(2)⊕2M_{2}^{S,-}(2)⊕M_{3}^{S,+}(2)⊕2M_{3}^{S,-}(2)⊕M_{4}^{S,+}(2)⊕2M_{4}^{S,-}(2) $ | |
R:(1/2,1/2,1/2) | R:(1/2,1/2,1/2) | $R_{1}^{S,+}(2)⊕R_{2}^{S,+}R_{3}^{S,+}(4)⊕R_{4}^{S,+}(6)⊕2R_{4}^{S,-}(6) $ | |
X:(0,1/2,0) | X:(0,1/2,0) | $3X_{1}^{S,+}(2)⊕X_{2}^{S,+}(2)⊕2X_{2}^{S,-}(2)⊕X_{3}^{S,+}(2)⊕2X_{3}^{S,-}(2)⊕X_{4}^{S,+}(2)⊕2X_{4}^{S,-}(2) $ | |
Δ:(0,v,0) | Δ:(0,v,0) | $5Δ_{1}^{S}(2)⊕Δ_{2}^{S}(2)⊕3Δ_{3}^{S}(2)⊕3Δ_{4}^{S}(2) $ | |
Λ:(u,u,u) | Λ:(u,u,u) | $4Λ_{1}^{S}(2)⊕4Λ_{2}^{S}Λ_{3}^{S}(4) $ | |
S:(u,1/2,u) | S:(u,1/2,u) | $8S_{1}^{S}(2)⊕4S_{2}^{S}(2) $ | |
Σ:(u,u,0) | Σ:(u,u,0) | $8Σ_{1}^{S}(2)⊕4Σ_{2}^{S}(2) $ | |
T:(1/2,1/2,w) | T:(1/2,1/2,w) | $5T_{1}^{S}(2)⊕T_{2}^{S}(2)⊕3T_{3}^{S}(2)⊕3T_{4}^{S}(2) $ | |
Z:(u,1/2,0) | Z:(u,1/2,0) | $10Z_{1}^{S}(1)⊕2Z_{2}^{S}(1)⊕6Z_{3}^{S}(1)⊕6Z_{4}^{S}(1)$ | Spin Splitting |
A:(u,v,0) | A:(u,v,0) | $16A_{1}^{S}(1)⊕8A_{2}^{S}(1)$ | Spin Splitting |
B:(u,1/2,w) | B:(u,1/2,w) | $16B_{1}^{S}(1)⊕8B_{2}^{S}(1)$ | Spin Splitting |
C:(u,u,w) | C:(u,u,w) | $12C_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u,v,w) | $24GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | A'↑G(24) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{2}^{S,+}Γ_{3}^{S,+}(4)⊕Γ_{4}^{S,+}(6)⊕2Γ_{4}^{S,-}(6) $ | |
M:(1/2,1/2,0) | M:(1/2,1/2,0) | $M_{1}^{S,+}(2)⊕2M_{1}^{S,-}(2)⊕3M_{2}^{S,+}(2)⊕M_{3}^{S,+}(2)⊕2M_{3}^{S,-}(2)⊕M_{4}^{S,+}(2)⊕2M_{4}^{S,-}(2) $ | |
R:(1/2,1/2,1/2) | R:(1/2,1/2,1/2) | $R_{1}^{S,-}(2)⊕R_{2}^{S,-}R_{3}^{S,-}(4)⊕2R_{4}^{S,+}(6)⊕R_{4}^{S,-}(6) $ | |
X:(0,1/2,0) | X:(0,1/2,0) | $2X_{1}^{S,+}(2)⊕X_{1}^{S,-}(2)⊕2X_{2}^{S,+}(2)⊕X_{2}^{S,-}(2)⊕2X_{3}^{S,+}(2)⊕X_{3}^{S,-}(2)⊕3X_{4}^{S,-}(2) $ | |
Δ:(0,v,0) | Δ:(0,v,0) | $5Δ_{1}^{S}(2)⊕Δ_{2}^{S}(2)⊕3Δ_{3}^{S}(2)⊕3Δ_{4}^{S}(2) $ | |
Λ:(u,u,u) | Λ:(u,u,u) | $4Λ_{1}^{S}(2)⊕4Λ_{2}^{S}Λ_{3}^{S}(4) $ | |
S:(u,1/2,u) | S:(u,1/2,u) | $4S_{1}^{S}(2)⊕8S_{2}^{S}(2) $ | |
Σ:(u,u,0) | Σ:(u,u,0) | $8Σ_{1}^{S}(2)⊕4Σ_{2}^{S}(2) $ | |
T:(1/2,1/2,w) | T:(1/2,1/2,w) | $T_{1}^{S}(2)⊕5 T_{2}^{S}(2)⊕3T_{3}^{S}(2)⊕3T_{4}^{S}(2) $ | |
Z:(u,1/2,0) | Z:(u,1/2,0) | $6Z_{1}^{S}(1)⊕6Z_{2}^{S}(1)⊕2Z_{3}^{S}(1)⊕10Z_{4}^{S}(1)$ | Spin Splitting |
A:(u,v,0) | A:(u,v,0) | $16A_{1}^{S}(1)⊕8A_{2}^{S}(1)$ | Spin Splitting |
B:(u,1/2,w) | B:(u,1/2,w) | $8B_{1}^{S}(1)⊕16B_{2}^{S}(1)$ | Spin Splitting |
C:(u,u,w) | C:(u,u,w) | $12C_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u,v,w) | $24GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | A↑G(48) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{1}^{S,-}(2)⊕Γ_{2}^{S,+}Γ_{3}^{S,+}(4)⊕Γ_{2}^{S,-}Γ_{3}^{S,-}(4)⊕3Γ_{4}^{S,+}(6)⊕3Γ_{4}^{S,-}(6) $ | |
M:(1/2,1/2,0) | M:(1/2,1/2,0) | $3M_{1}^{S,+}(2)⊕3M_{1}^{S,-}(2)⊕3M_{2}^{S,+}(2)⊕3M_{2}^{S,-}(2)⊕3M_{3}^{S,+}(2)⊕3M_{3}^{S,-}(2)⊕3M_{4}^{S,+}(2)⊕3M_{4}^{S,-}(2) $ | |
R:(1/2,1/2,1/2) | R:(1/2,1/2,1/2) | $R_{1}^{S,+}(2)⊕R_{1}^{S,-}(2)⊕R_{2}^{S,+}R_{3}^{S,+}(4)⊕R_{2}^{S,-}R_{3}^{S,-}(4)⊕3R_{4}^{S,+}(6)⊕3R_{4}^{S,-}(6) $ | |
X:(0,1/2,0) | X:(0,1/2,0) | $3X_{1}^{S,+}(2)⊕3X_{1}^{S,-}(2)⊕3X_{2}^{S,+}(2)⊕3X_{2}^{S,-}(2)⊕3X_{3}^{S,+}(2)⊕3X_{3}^{S,-}(2)⊕3X_{4}^{S,+}(2)⊕3X_{4}^{S,-}(2) $ | |
Δ:(0,v,0) | Δ:(0,v,0) | $6Δ_{1}^{S}(2)⊕6Δ_{2}^{S}(2)⊕6Δ_{3}^{S}(2)⊕6Δ_{4}^{S}(2) $ | |
Λ:(u,u,u) | Λ:(u,u,u) | $8Λ_{1}^{S}(2)⊕8Λ_{2}^{S}Λ_{3}^{S}(4) $ | |
S:(u,1/2,u) | S:(u,1/2,u) | $12S_{1}^{S}(2)⊕12S_{2}^{S}(2) $ | |
Σ:(u,u,0) | Σ:(u,u,0) | $12Σ_{1}^{S}(2)⊕12Σ_{2}^{S}(2) $ | |
T:(1/2,1/2,w) | T:(1/2,1/2,w) | $6T_{1}^{S}(2)⊕6T_{2}^{S}(2)⊕6T_{3}^{S}(2)⊕6T_{4}^{S}(2) $ | |
Z:(u,1/2,0) | Z:(u,1/2,0) | $12Z_{1}^{S}(1)⊕12Z_{2}^{S}(1)⊕12Z_{3}^{S}(1)⊕12Z_{4}^{S}(1)$ | Spin Splitting |
A:(u,v,0) | A:(u,v,0) | $24A_{1}^{S}(1)⊕24A_{2}^{S}(1)$ | Spin Splitting |
B:(u,1/2,w) | B:(u,1/2,w) | $24B_{1}^{S}(1)⊕24B_{2}^{S}(1)$ | Spin Splitting |
C:(u,u,w) | C:(u,u,w) | $24C_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u,v,w) | $48GP_{1}^{S}(1)$ | Spin Splitting |