The continuously infinite group ∞1 is omitted.
Coordinates | Seitz symbol |
---|---|
a, b, c | x, y, z | { 1 ‖ 1 | 0 } |
-b, a-b, c | x, y, z | { 1 ‖ 3+001 | 0 } |
-a+b, -a, c | x, y, z | { 1 ‖ 3-001 | 0 } |
-a, -b, -c | x, y, z | { 1 ‖ -1 | 0 } |
b, -a+b, -c | x, y, z | { 1 ‖ -3+001 | 0 } |
a-b, a, -c | x, y, z | { 1 ‖ -3-001 | 0 } |
a, a-b, -c | -x, -y, -z | { -1 ‖ 2210 | 0 } |
-a+b, b, -c | -x, -y, -z | { -1 ‖ 2120 | 0 } |
-b, -a, -c | -x, -y, -z | { -1 ‖ 21-10 | 0 } |
-a, -a+b, c | -x, -y, -z | { -1 ‖ m210 | 0 } |
a-b, -b, c | -x, -y, -z | { -1 ‖ m120 | 0 } |
b, a, c | -x, -y, -z | { -1 ‖ m1-10 | 0 } |
a, b, c | -x, y, z | { m ‖ 1 | 0 } |
-b, a-b, c | -x, y, z | { m ‖ 3+001 | 0 } |
-a+b, -a, c | -x, y, z | { m ‖ 3-001 | 0 } |
-a, -b, -c | -x, y, z | { m ‖ -1 | 0 } |
b, -a+b, -c | -x, y, z | { m ‖ -3+001 | 0 } |
a-b, a, -c | -x, y, z | { m ‖ -3-001 | 0 } |
a, a-b, -c | x, -y, -z | { 2 ‖ 2210 | 0 } |
-a+b, b, -c | x, -y, -z | { 2 ‖ 2120 | 0 } |
-b, -a, -c | x, -y, -z | { 2 ‖ 21-10 | 0 } |
-a, -a+b, c | x, -y, -z | { 2 ‖ m210 | 0 } |
a-b, -b, c | x, -y, -z | { 2 ‖ m120 | 0 } |
b, a, c | x, -y, -z | { 2 ‖ m1-10 | 0 } |
WP | Site symmetry | Representative |
---|---|---|
1a | $\ce{^{1}{-3}}.\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (0,0,0 | 0,0,0) |
1b | $\ce{^{1}{-3}}.\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (0,0,1/2 | 0,0,0) |
2c | $\ce{^{1}{3}}.\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (1/3,2/3,0 | 0,0,0) |
2d | $\ce{^{1}{3}}.\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (1/3,2/3,1/2 | 0,0,0) |
2e | $\ce{^{1}{3}}.\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (0,0,c | 0,0,0) |
3f | $..\ce{^{-1}{2}}/\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (1/2,0,0 | 0,0,0) |
3g | $..\ce{^{-1}{2}}/\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (1/2,0,1/2 | 0,0,0) |
4h | $\ce{^{1}{3}}..\ce{^{\infty m}{1}} $ | (1/3,2/3,c | 0,0,z) |
6i | $..\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (a,-a,0 | 0,0,0) |
6j | $..\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (a,-a,1/2 | 0,0,0) |
6k | $..\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (a,0,c | 0,0,0) |
12l | $\ce{^{1}{1}}\ce{^{\infty m}{1}} $ | (a,b,c | 0,0,z) |
Wavevector-k | Little co-group |
---|---|
A:(0,0,1/2) | $\ce{^{1}{-3}}\ce{^{1}{1}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
Γ:(0,0,0) | $\ce{^{1}{-3}}\ce{^{1}{1}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
H:(1/3,1/3,1/2) | $\ce{^{m}{-3}}\ce{^{1}{1}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
K:(1/3,1/3,0) | $\ce{^{m}{-3}}\ce{^{1}{1}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
L:(1/2,0,1/2) | $\ce{^{2}{2/}}\ce{^{2}{m}}\ce{^{\infty m}{1}} $ |
M:(1/2,0,0) | $\ce{^{2}{2/}}\ce{^{2}{m}}\ce{^{\infty m}{1}} $ |
Δ:(0,0,w) | $\ce{^{m}{-3}}\ce{^{1}{1}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
P:(1/3,1/3,w) | $\ce{^{m}{-3}}\ce{^{1}{1}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
Λ:(u,u,0) | $\ce{^{-1}{2/}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
Σ:(u,0,0) | $\ce{^{2}{2/}}\ce{^{-1}{m}}\ce{^{\infty}{1}} $ |
Q:(u,u,1/2) | $\ce{^{-1}{2/}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
R:(u,0,1/2) | $\ce{^{2}{2/}}\ce{^{-1}{m}}\ce{^{\infty}{1}} $ |
U:(1/2,0,w) | $\ce{^{-1}{2/}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
B:(u,v,0) | $\ce{^{m}{-1}}\ce{^{\infty}{1}} $ |
C:(u,u,w) | $\ce{^{-1}{2/}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
D:(u,0,w) | $\ce{^{m}{-1}}\ce{^{\infty}{1}} $ |
E:(u,v,1/2) | $\ce{^{m}{-1}}\ce{^{\infty}{1}} $ |
GP:(u,v,w) | $\ce{^{m}{-1}}\ce{^{\infty}{1}} $ |
Spin Brillouin Zone
k-vector | k-vector-G↑ | A1↑G(4) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{1}^{S,-}(2) $ | |
A:(0,0,1/2) | A:(0,0,1/2) | $A_{1}^{S,+}(2)⊕A_{1}^{S,-}(2) $ | |
H:(1/3,1/3,1/2) | H:(1/3,1/3,1/2) | $H_{2}^{S}H_{3}^{S}(4) $ | |
K:(1/3,1/3,0) | K:(1/3,1/3,0) | $K_{2}^{S}K_{3}^{S}(4) $ | |
L:(1/2,0,1/2) | L:(1/2,0,1/2) | $L_{1}^{S,+}(2)⊕L_{1}^{S,-}(2) $ | |
M:(1/2,0,0) | M:(1/2,0,0) | $M_{1}^{S,+}(2)⊕M_{1}^{S,-}(2) $ | |
Δ:(0,0,w) | Δ:(0,0,w) | $2Δ_{1}^{S}(2) $ | |
Λ:(u,u,0) | Λ:(u,u,0) | $2Λ_{1}^{S}(2) $ | |
P:(1/3,1/3,w) | P:(1/3,1/3,w) | $P_{2}^{S}P_{3}^{S}(4) $ | |
Q:(u,u,1/2) | Q:(u,u,1/2) | $2Q_{1}^{S}(2) $ | |
R:(u,0,1/2) | R:(u,0,1/2) | $2R_{1}^{S}(2) $ | |
Σ:(u,0,0) | Σ:(u,0,0) | $2Σ_{1}^{S}(2) $ | |
U:(1/2,0,w) | U:(1/2,0,w) | $2U_{1}^{S}(2) $ | |
B:(u,v,0) | B:(u,v,0) | $4B_{1}^{S}(1)$ | Spin Splitting |
C:(u,u,w) | C:(u,u,w) | $2C_{1}^{S}(2) $ | |
D:(u,0,w) | D:(u,0,w) | $4D_{1}^{S}(1)$ | Spin Splitting |
E:(u,v,1/2) | E:(u,v,1/2) | $4E_{1}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(u,v,w) | $4GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | A↑G(12) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{1}^{S,-}(2)⊕Γ_{2}^{S,+}Γ_{3}^{S,+}(4)⊕Γ_{2}^{S,-}Γ_{3}^{S,-}(4) $ | |
A:(0,0,1/2) | A:(0,0,1/2) | $A_{1}^{S,+}(2)⊕A_{1}^{S,-}(2)⊕A_{2}^{S,+}A_{3}^{S,+}(4)⊕A_{2}^{S,-}A_{3}^{S,-}(4) $ | |
H:(1/3,1/3,1/2) | H:(1/3,1/3,1/2) | $2H_{1}^{S}(2)⊕2H_{2}^{S}H_{3}^{S}(4) $ | |
K:(1/3,1/3,0) | K:(1/3,1/3,0) | $2K_{1}^{S}(2)⊕2K_{2}^{S}K_{3}^{S}(4) $ | |
L:(1/2,0,1/2) | L:(1/2,0,1/2) | $3L_{1}^{S,+}(2)⊕3L_{1}^{S,-}(2) $ | |
M:(1/2,0,0) | M:(1/2,0,0) | $3M_{1}^{S,+}(2)⊕3M_{1}^{S,-}(2) $ | |
Δ:(0,0,w) | Δ:(0,0,w) | $2Δ_{1}^{S}(2)⊕2Δ_{2}^{S}Δ_{3}^{S}(4) $ | |
Λ:(u,u,0) | Λ:(u,u,0) | $6Λ_{1}^{S}(2) $ | |
P:(1/3,1/3,w) | P:(1/3,1/3,w) | $2P_{1}^{S}(2)⊕2P_{2}^{S}P_{3}^{S}(4) $ | |
Q:(u,u,1/2) | Q:(u,u,1/2) | $6Q_{1}^{S}(2) $ | |
R:(u,0,1/2) | R:(u,0,1/2) | $6R_{1}^{S}(2) $ | |
Σ:(u,0,0) | Σ:(u,0,0) | $6Σ_{1}^{S}(2) $ | |
U:(1/2,0,w) | U:(1/2,0,w) | $6U_{1}^{S}(2) $ | |
B:(u,v,0) | B:(u,v,0) | $12B_{1}^{S}(1)$ | Spin Splitting |
C:(u,u,w) | C:(u,u,w) | $6C_{1}^{S}(2) $ | |
D:(u,0,w) | D:(u,0,w) | $12D_{1}^{S}(1)$ | Spin Splitting |
E:(u,v,1/2) | E:(u,v,1/2) | $12E_{1}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(u,v,w) | $12GP_{1}^{S}(1)$ | Spin Splitting |