The continuously infinite group ∞1 is omitted.
Coordinates | Seitz symbol |
---|---|
a, b, c | x, y, z | { 1 ‖ 1 | 0 } |
-b, a, c | x, y, z | { 1 ‖ 4+001 | 0 } |
b, -a, c | x, y, z | { 1 ‖ 4-001 | 0 } |
-a, -b, c | x, y, z | { 1 ‖ 2001 | 0 } |
-a, b, c | -x, -y, -z | { -1 ‖ m100 | 0 } |
a, -b, c | -x, -y, -z | { -1 ‖ m010 | 0 } |
-b, -a, c | -x, -y, -z | { -1 ‖ m110 | 0 } |
b, a, c | -x, -y, -z | { -1 ‖ m1-10 | 0 } |
a, b, c | -x, y, z | { m ‖ 1 | 0 } |
-b, a, c | -x, y, z | { m ‖ 4+001 | 0 } |
b, -a, c | -x, y, z | { m ‖ 4-001 | 0 } |
-a, -b, c | -x, y, z | { m ‖ 2001 | 0 } |
-a, b, c | x, -y, -z | { 2 ‖ m100 | 0 } |
a, -b, c | x, -y, -z | { 2 ‖ m010 | 0 } |
-b, -a, c | x, -y, -z | { 2 ‖ m110 | 0 } |
b, a, c | x, -y, -z | { 2 ‖ m1-10 | 0 } |
WP | Site symmetry | Representative |
---|---|---|
1a | $\ce{^{1}{4}}\ce{^{-1}{m}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (0,0,c | 0,0,0) |
1b | $\ce{^{1}{4}}\ce{^{-1}{m}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (1/2,1/2,c | 0,0,0) |
2c | $\ce{^{1}{2}}\ce{^{-1}{m}}\ce{^{-1}{m}}.\ce{^{\infty m}{1}} $ | (1/2,0,c | 0,0,0) |
4d | $..\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (a,a,c | 0,0,0) |
4e | $.\ce{^{-1}{m}}.\ce{^{\infty m}{1}} $ | (a,0,c | 0,0,0) |
4f | $.\ce{^{-1}{m}}.\ce{^{\infty m}{1}} $ | (a,1/2,c | 0,0,0) |
8g | $\ce{^{1}{1}}\ce{^{\infty m}{1}} $ | (a,b,c | 0,0,z) |
Wavevector-k | Little co-group |
---|---|
A:(1/2,1/2,1/2) | $\ce{^{1}{4}}\ce{^{-1}{m}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
Γ:(0,0,0) | $\ce{^{1}{4}}\ce{^{-1}{m}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
M:(1/2,1/2,0) | $\ce{^{1}{4}}\ce{^{-1}{m}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
Z:(0,0,1/2) | $\ce{^{1}{4}}\ce{^{-1}{m}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
R:(0,1/2,1/2) | $\ce{^{2}{m}}\ce{^{2}{m}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ |
X:(0,1/2,0) | $\ce{^{2}{m}}\ce{^{2}{m}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ |
Λ:(0,0,w) | $\ce{^{1}{4}}\ce{^{2}{m}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
V:(1/2,1/2,w) | $\ce{^{1}{4}}\ce{^{2}{m}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
Δ:(0,v,0) | $\ce{^{2}{m}}\ce{^{-1}{m}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
S:(u,u,1/2) | $\ce{^{2}{m}}\ce{^{-1}{m}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
Σ:(u,u,0) | $\ce{^{2}{m}}\ce{^{-1}{m}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
T:(u,1/2,1/2) | $\ce{^{-1}{m}}\ce{^{2}{m}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
U:(0,v,1/2) | $\ce{^{2}{m}}\ce{^{-1}{m}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
W:(0,1/2,w) | $\ce{^{2}{m}}\ce{^{2}{m}}\ce{^{1}{2}}\ce{^{\infty}{1}} $ |
Y:(u,1/2,0) | $\ce{^{-1}{m}}\ce{^{2}{m}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
B:(0,v,w) | $\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
C:(u,u,w) | $\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
D:(u,v,0) | $\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
E:(u,v,1/2) | $\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
F:(u,1/2,w) | $\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
GP:(u,v,w) | $\ce{^{1}{1}}\ce{^{\infty}{1}} $ |
Spin Brillouin Zone
k-vector | k-vector-G↑ | A↑G(8) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2)⊕Γ_{2}^{S}(2)⊕Γ_{3}^{S}Γ_{4}^{S}(4) $ | |
A:(1/2,1/2,1/2) | A:(1/2,1/2,1/2) | $A_{1}^{S}(2)⊕A_{2}^{S}(2)⊕A_{3}^{S}A_{4}^{S}(4) $ | |
M:(1/2,1/2,0) | M:(1/2,1/2,0) | $M_{1}^{S}(2)⊕M_{2}^{S}(2)⊕M_{3}^{S}M_{4}^{S}(4) $ | |
R:(0,1/2,1/2) | R:(0,1/2,1/2) | $2R_{1}^{S}(2)⊕2R_{2}^{S}(2) $ | |
X:(0,1/2,0) | X:(0,1/2,0) | $2X_{1}^{S}(2)⊕2X_{2}^{S}(2) $ | |
Z:(0,0,1/2) | Z:(0,0,1/2) | $Z_{1}^{S}(2)⊕Z_{2}^{S}(2)⊕Z_{3}^{S}Z_{4}^{S}(4) $ | |
Δ:(0,v,0) | Δ:(0,v,0) | $4Δ_{1}^{S}(2) $ | |
Λ:(0,0,w) | Λ:(0,0,w) | $Λ_{1}^{S}(2)⊕Λ_{2}^{S}(2)⊕Λ_{3}^{S}(2)⊕Λ_{4}^{S}(2) $ | |
S:(u,u,1/2) | S:(u,u,1/2) | $4S_{1}^{S}(2) $ | |
Σ:(u,u,0) | Σ:(u,u,0) | $4Σ_{1}^{S}(2) $ | |
T:(u,1/2,1/2) | T:(u,1/2,1/2) | $4T_{1}^{S}(2) $ | |
U:(0,v,1/2) | U:(0,v,1/2) | $4U_{1}^{S}(2) $ | |
V:(1/2,1/2,w) | V:(1/2,1/2,w) | $V_{1}^{S}(2)⊕V_{2}^{S}(2)⊕V_{3}^{S}(2)⊕V_{4}^{S}(2) $ | |
W:(0,1/2,w) | W:(0,1/2,w) | $2W_{1}^{S}(2)⊕2W_{2}^{S}(2) $ | |
Y:(u,1/2,0) | Y:(u,1/2,0) | $4Y_{1}^{S}(2) $ | |
B:(0,v,w) | B:(0,v,w) | $4B_{1}^{S}(2) $ | |
C:(u,u,w) | C:(u,u,w) | $4C_{1}^{S}(2) $ | |
D:(u,v,0) | D:(u,v,0) | $4D_{1}^{S}(2) $ | |
E:(u,v,1/2) | E:(u,v,1/2) | $4E_{1}^{S}(2) $ | |
F:(u,1/2,w) | F:(u,1/2,w) | $4F_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u,v,w) | $4GP_{1}^{S}(2) $ |