The continuously infinite group ∞1 is omitted.
Coordinates | Seitz symbol |
---|---|
a, b, c | x, y, z | { 1 ‖ 1 | 0 } |
-a, -b, c | x, y, z | { 1 ‖ 2001 | 0 } |
-b, -a, c | x, y, z | { 1 ‖ m110 | 0 } |
b, a, c | x, y, z | { 1 ‖ m1-10 | 0 } |
-b, a, c | -x, -y, -z | { -1 ‖ 4+001 | 0 } |
b, -a, c | -x, -y, -z | { -1 ‖ 4-001 | 0 } |
-a, b, c | -x, -y, -z | { -1 ‖ m100 | 0 } |
a, -b, c | -x, -y, -z | { -1 ‖ m010 | 0 } |
a, b, c | -x, y, z | { m ‖ 1 | 0 } |
-a, -b, c | -x, y, z | { m ‖ 2001 | 0 } |
-b, -a, c | -x, y, z | { m ‖ m110 | 0 } |
b, a, c | -x, y, z | { m ‖ m1-10 | 0 } |
-b, a, c | x, -y, -z | { 2 ‖ 4+001 | 0 } |
b, -a, c | x, -y, -z | { 2 ‖ 4-001 | 0 } |
-a, b, c | x, -y, -z | { 2 ‖ m100 | 0 } |
a, -b, c | x, -y, -z | { 2 ‖ m010 | 0 } |
WP | Site symmetry | Representative |
---|---|---|
1a | $\ce{^{-1}{4}}\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (0,0,c | 0,0,0) |
1b | $\ce{^{-1}{4}}\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (1/2,1/2,c | 0,0,0) |
2c | $\ce{^{1}{2}}\ce{^{-1}{m}}\ce{^{-1}{m}}.\ce{^{\infty m}{1}} $ | (1/2,0,c | 0,0,0) |
4d | $..\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (a,a,c | 0,0,z) |
4e | $.\ce{^{-1}{m}}.\ce{^{\infty m}{1}} $ | (a,0,c | 0,0,0) |
4f | $.\ce{^{-1}{m}}.\ce{^{\infty m}{1}} $ | (a,1/2,c | 0,0,0) |
8g | $\ce{^{1}{1}}\ce{^{\infty m}{1}} $ | (a,b,c | 0,0,z) |
Wavevector-k | Little co-group |
---|---|
A:(1/2,1/2,1/2) | $\ce{^{-1}{4}}\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ |
Γ:(0,0,0) | $\ce{^{-1}{4}}\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ |
M:(1/2,1/2,0) | $\ce{^{-1}{4}}\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ |
Z:(0,0,1/2) | $\ce{^{-1}{4}}\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ |
R:(0,1/2,1/2) | $\ce{^{2}{m}}\ce{^{2}{m}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ |
X:(0,1/2,0) | $\ce{^{2}{m}}\ce{^{2}{m}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ |
Λ:(0,0,w) | $\ce{^{2}{4}}\ce{^{2}{m}}\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
V:(1/2,1/2,w) | $\ce{^{2}{4}}\ce{^{2}{m}}\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
Δ:(0,v,0) | $\ce{^{2}{m}}\ce{^{-1}{m}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
S:(u,u,1/2) | $\ce{^{1}{m}}\ce{^{m}{m}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
Σ:(u,u,0) | $\ce{^{1}{m}}\ce{^{m}{m}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
T:(u,1/2,1/2) | $\ce{^{-1}{m}}\ce{^{2}{m}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
U:(0,v,1/2) | $\ce{^{2}{m}}\ce{^{-1}{m}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
W:(0,1/2,w) | $\ce{^{2}{m}}\ce{^{2}{m}}\ce{^{1}{2}}\ce{^{\infty}{1}} $ |
Y:(u,1/2,0) | $\ce{^{-1}{m}}\ce{^{2}{m}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
B:(0,v,w) | $\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
C:(u,u,w) | $\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
D:(u,v,0) | $\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
E:(u,v,1/2) | $\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
F:(u,1/2,w) | $\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
GP:(u,v,w) | $\ce{^{1}{1}}\ce{^{\infty}{1}} $ |
Spin Brillouin Zone
k-vector | k-vector-G↑ | A'↑G(4) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2)⊕Γ_{3}^{S}(2) $ | |
A:(1/2,1/2,1/2) | T:(1,0,1/2) | $(A)T_{1}^{S}(2)⊕(A)T_{3}^{S}(2) $ | |
M:(1/2,1/2,0) | Y:(1,0,0) | $(M)Y_{1}^{S}(2)⊕(M)Y_{3}^{S}(2) $ | |
R:(0,1/2,1/2) | R:(1/2,1/2,1/2) | $R_{1}^{S}(2)⊕R_{2}^{S}(2) $ | |
X:(0,1/2,0) | S:(1/2,1/2,0) | $(X)S_{1}^{S}(2)⊕(X)S_{2}^{S}(2) $ | |
Z:(0,0,1/2) | Z:(0,0,1/2) | $Z_{1}^{S}(2)⊕Z_{3}^{S}(2) $ | |
Δ:(0,v,0) | P:(v,v,0) | $2(Δ)P_{1}^{S}(2) $ | |
Λ:(0,0,w) | Λ:(0,0,w) | $Λ_{1}^{S}(2)⊕Λ_{3}^{S}(2) $ | |
S:(u,u,1/2) | A:(2*u,0,1/2) | $2(S)A_{1}^{S}(1)⊕2(S)A_{2}^{S}(1)$ | Spin Splitting |
Σ:(u,u,0) | Σ:(2*u,0,0) | $2Σ_{1}^{S}(1)⊕2Σ_{2}^{S}(1)$ | Spin Splitting |
T:(u,1/2,1/2) | Q:(1/2+u,1/2-u,1/2) | $2(T)Q_{1}^{S}(2) $ | |
U:(0,v,1/2) | Q:(v,v,1/2) | $2(U)Q_{1}^{S}(2) $ | |
V:(1/2,1/2,w) | H:(1,0,w) | $(V)H_{1}^{S}(2)⊕(V)H_{3}^{S}(2) $ | |
W:(0,1/2,w) | D:(1/2,1/2,w) | $(W)D_{1}^{S}(2)⊕(W)D_{2}^{S}(2) $ | |
Y:(u,1/2,0) | P:(1/2+u,1/2-u,0) | $2(Y)P_{1}^{S}(2) $ | |
B:(0,v,w) | GP:(v,v,w) | $2(B)GP_{1}^{S}(2) $ | |
C:(u,u,w) | M:(2*u,0,w) | $2(C)M_{1}^{S}(1)⊕2(C)M_{2}^{S}(1)$ | Spin Splitting |
D:(u,v,0) | P:(u+v,-u+v,0) | $4(D)P_{1}^{S}(1)$ | Spin Splitting |
E:(u,v,1/2) | Q:(u+v,-u+v,1/2) | $4(E)Q_{1}^{S}(1)$ | Spin Splitting |
F:(u,1/2,w) | GP:(1/2+u,1/2-u,w) | $2(F)GP_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u+v,-u+v,w) | $4GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | A↑G(8) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2)⊕Γ_{2}^{S}(2)⊕Γ_{3}^{S}(2)⊕Γ_{4}^{S}(2) $ | |
A:(1/2,1/2,1/2) | T:(1,0,1/2) | $(A)T_{1}^{S}(2)⊕(A)T_{2}^{S}(2)⊕(A)T_{3}^{S}(2)⊕(A)T_{4}^{S}(2) $ | |
M:(1/2,1/2,0) | Y:(1,0,0) | $(M)Y_{1}^{S}(2)⊕(M)Y_{2}^{S}(2)⊕(M)Y_{3}^{S}(2)⊕(M)Y_{4}^{S}(2) $ | |
R:(0,1/2,1/2) | R:(1/2,1/2,1/2) | $2R_{1}^{S}(2)⊕2R_{2}^{S}(2) $ | |
X:(0,1/2,0) | S:(1/2,1/2,0) | $2(X)S_{1}^{S}(2)⊕2(X)S_{2}^{S}(2) $ | |
Z:(0,0,1/2) | Z:(0,0,1/2) | $Z_{1}^{S}(2)⊕Z_{2}^{S}(2)⊕Z_{3}^{S}(2)⊕Z_{4}^{S}(2) $ | |
Δ:(0,v,0) | P:(v,v,0) | $4(Δ)P_{1}^{S}(2) $ | |
Λ:(0,0,w) | Λ:(0,0,w) | $Λ_{1}^{S}(2)⊕Λ_{2}^{S}(2)⊕Λ_{3}^{S}(2)⊕Λ_{4}^{S}(2) $ | |
S:(u,u,1/2) | A:(2*u,0,1/2) | $4(S)A_{1}^{S}(1)⊕4(S)A_{2}^{S}(1)$ | Spin Splitting |
Σ:(u,u,0) | Σ:(2*u,0,0) | $4Σ_{1}^{S}(1)⊕4Σ_{2}^{S}(1)$ | Spin Splitting |
T:(u,1/2,1/2) | Q:(1/2+u,1/2-u,1/2) | $4(T)Q_{1}^{S}(2) $ | |
U:(0,v,1/2) | Q:(v,v,1/2) | $4(U)Q_{1}^{S}(2) $ | |
V:(1/2,1/2,w) | H:(1,0,w) | $(V)H_{1}^{S}(2)⊕(V)H_{2}^{S}(2)⊕(V)H_{3}^{S}(2)⊕(V)H_{4}^{S}(2) $ | |
W:(0,1/2,w) | D:(1/2,1/2,w) | $2(W)D_{1}^{S}(2)⊕2(W)D_{2}^{S}(2) $ | |
Y:(u,1/2,0) | P:(1/2+u,1/2-u,0) | $4(Y)P_{1}^{S}(2) $ | |
B:(0,v,w) | GP:(v,v,w) | $4(B)GP_{1}^{S}(2) $ | |
C:(u,u,w) | M:(2*u,0,w) | $4(C)M_{1}^{S}(1)⊕4(C)M_{2}^{S}(1)$ | Spin Splitting |
D:(u,v,0) | P:(u+v,-u+v,0) | $8(D)P_{1}^{S}(1)$ | Spin Splitting |
E:(u,v,1/2) | Q:(u+v,-u+v,1/2) | $8(E)Q_{1}^{S}(1)$ | Spin Splitting |
F:(u,1/2,w) | GP:(1/2+u,1/2-u,w) | $4(F)GP_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u+v,-u+v,w) | $8GP_{1}^{S}(1)$ | Spin Splitting |