The continuously infinite group ∞1 is omitted.
Coordinates | Seitz symbol |
---|---|
a, b, c | x, y, z | { 1 ‖ 1 | 0 } |
a, -b, -c | x, y, z | { 1 ‖ 2100 | 0 } |
a, -b, c | x, y, z | { 1 ‖ m010 | 0 } |
a, b, -c | x, y, z | { 1 ‖ m001 | 0 } |
-a, b, -c | -x, -y, -z | { -1 ‖ 2010 | 0 } |
-a, -b, c | -x, -y, -z | { -1 ‖ 2001 | 0 } |
-a, -b, -c | -x, -y, -z | { -1 ‖ -1 | 0 } |
-a, b, c | -x, -y, -z | { -1 ‖ m100 | 0 } |
a+1/2, b+1/2, c+1/2 | x, y, z | { 1 ‖ 1 | 1/2 1/2 1/2 } |
a+1/2, -b+1/2, -c+1/2 | x, y, z | { 1 ‖ 2100 | 1/2 1/2 1/2 } |
a+1/2, -b+1/2, c+1/2 | x, y, z | { 1 ‖ m010 | 1/2 1/2 1/2 } |
a+1/2, b+1/2, -c+1/2 | x, y, z | { 1 ‖ m001 | 1/2 1/2 1/2 } |
-a+1/2, b+1/2, -c+1/2 | -x, -y, -z | { -1 ‖ 2010 | 1/2 1/2 1/2 } |
-a+1/2, -b+1/2, c+1/2 | -x, -y, -z | { -1 ‖ 2001 | 1/2 1/2 1/2 } |
-a+1/2, -b+1/2, -c+1/2 | -x, -y, -z | { -1 ‖ -1 | 1/2 1/2 1/2 } |
-a+1/2, b+1/2, c+1/2 | -x, -y, -z | { -1 ‖ m100 | 1/2 1/2 1/2 } |
a, b, c | -x, y, z | { m ‖ 1 | 0 } |
a, -b, -c | -x, y, z | { m ‖ 2100 | 0 } |
a, -b, c | -x, y, z | { m ‖ m010 | 0 } |
a, b, -c | -x, y, z | { m ‖ m001 | 0 } |
-a, b, -c | x, -y, -z | { 2 ‖ 2010 | 0 } |
-a, -b, c | x, -y, -z | { 2 ‖ 2001 | 0 } |
-a, -b, -c | x, -y, -z | { 2 ‖ -1 | 0 } |
-a, b, c | x, -y, -z | { 2 ‖ m100 | 0 } |
a+1/2, b+1/2, c+1/2 | -x, y, z | { m ‖ 1 | 1/2 1/2 1/2 } |
a+1/2, -b+1/2, -c+1/2 | -x, y, z | { m ‖ 2100 | 1/2 1/2 1/2 } |
a+1/2, -b+1/2, c+1/2 | -x, y, z | { m ‖ m010 | 1/2 1/2 1/2 } |
a+1/2, b+1/2, -c+1/2 | -x, y, z | { m ‖ m001 | 1/2 1/2 1/2 } |
-a+1/2, b+1/2, -c+1/2 | x, -y, -z | { 2 ‖ 2010 | 1/2 1/2 1/2 } |
-a+1/2, -b+1/2, c+1/2 | x, -y, -z | { 2 ‖ 2001 | 1/2 1/2 1/2 } |
-a+1/2, -b+1/2, -c+1/2 | x, -y, -z | { 2 ‖ -1 | 1/2 1/2 1/2 } |
-a+1/2, b+1/2, c+1/2 | x, -y, -z | { 2 ‖ m100 | 1/2 1/2 1/2 } |
WP | Site symmetry | Representative |
---|---|---|
2a | $\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (0,0,0 | 0,0,0) |
2b | $\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (0,1/2,1/2 | 0,0,0) |
2c | $\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (1/2,1/2,0 | 0,0,0) |
2d | $\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (1/2,0,1/2 | 0,0,0) |
4e | $\ce{^{1}{2}}\ce{^{1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (a,0,0 | 0,0,z) |
4f | $\ce{^{1}{2}}\ce{^{1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (a,1/2,0 | 0,0,z) |
4g | $\ce{^{-1}{m}}\ce{^{-1}{2}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (0,b,0 | 0,0,0) |
4h | $\ce{^{-1}{m}}\ce{^{-1}{2}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (0,b,1/2 | 0,0,0) |
4i | $\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (0,0,c | 0,0,0) |
4j | $\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (1/2,0,c | 0,0,0) |
8k | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ | (1/4,1/4,1/4 | 0,0,0) |
8l | $\ce{^{-1}{m}}..\ce{^{\infty m}{1}} $ | (0,b,c | 0,0,0) |
8m | $.\ce{^{1}{m}}.\ce{^{\infty m}{1}} $ | (a,0,c | 0,0,z) |
8n | $..\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (a,b,0 | 0,0,z) |
16o | $\ce{^{1}{1}}\ce{^{\infty m}{1}} $ | (a,b,c | 0,0,z) |
Wavevector-k | Little co-group |
---|---|
Γ:(0,0,0) | $\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ |
X:(1,1,1) | $\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ |
R:(1/2,0,1/2) | $\ce{^{2}{2/}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ |
S:(0,1/2,1/2) | $\ce{^{1}{2/}}\ce{^{2}{m}}\ce{^{\infty m}{1}} $ |
T:(1/2,1/2,0) | $\ce{^{2}{2/}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ |
W:(1/2,1/2,1/2) | $\ce{^{-1}{m}}\ce{^{m}{m}}\ce{^{m}{m}}\ce{^{\infty}{1}} $ |
Δ:(0,v,0) | $ \ce{^{2}{m}}\ce{^{m}{m}}\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
Λ:(0,0,w) | $\ce{^{2}{m}}\ce{^{1}{m}}\ce{^{m}{m}}\ce{^{\infty}{1}} $ |
Σ:(u,0,0) | $\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
A:(0,v,w) | $\ce{^{m}{2/}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
B:(u,0,w) | $\ce{^{-1}{2/}}\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
C:(u,v,0) | $\ce{^{-1}{2/}}\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
D:(u,1/2,1/2) | $\ce{^{1}{2/}}\ce{^{-1}{m}}\ce{^{\infty}{1}} $ |
P:(1/2,1/2,w) | $\ce{^{2}{2/}}\ce{^{m}{m}}\ce{^{\infty}{1}} $ |
Q:(1/2,v,1/2) | $\ce{^{2}{2/}}\ce{^{m}{m}}\ce{^{\infty}{1}} $ |
GP:(u,v,w) | $\ce{^{-1}{-1}}\ce{^{\infty}{1}} $ |
Spin Brillouin Zone
k-vector | k-vector-G↑ | A1↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2) $ | |
R:(-1/2,0,1/2) | R:(1/2,0,1/2) | $R_{1}^{S}(2) $ | |
S:(0,1/2,1/2) | T:(1/2,1/2,0) | $(S)T_{1}^{S}(2) $ | |
T:(-1/2,1/2,0) | S:(0,1/2,1/2) | $(T)S_{1}^{S}(2) $ | |
W:(-1/2,1/2,1/2) | W:(1/2,1/2,1/2) | $W_{1}^{S}(2) $ | |
X:(-1,1,1) | X:(1,1,1) | $X_{1}^{S}(2) $ | |
D:(u,1/2,1/2) | P:(1/2,1/2,-u) | $(D)P_{1}^{S}(2) $ | |
Δ:(0,v,0) | Δ:(0,v,0) | $Δ_{1}^{S}(2) $ | |
Λ:(0,0,w) | Σ:(w,0,0) | $(Λ)Σ_{1}^{S}(2) $ | |
P:(-1/2,1/2,1+w) | D:(1+w,1/2,1/2) | $(P)D_{1}^{S}(2) $ | |
Q:(-1/2,1+v,1/2) | Q:(1/2,1+v,1/2) | $Q_{1}^{S}(2) $ | |
Σ:(u,0,0) | Λ:(0,0,-u) | $(Σ)Λ_{1}^{S}(2) $ | |
A:(0,v,w) | C:(w,v,0) | $(A)C_{1}^{S}(2) $ | |
B:(u,0,w) | B:(w,0,-u) | $B_{1}^{S}(2) $ | |
C:(u,v,0) | A:(0,v,-u) | $(C)A_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(w,v,-u) | $GP_{1}^{S}(2) $ |
k-vector | k-vector-G↑ | A1↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2) $ | |
R:(-1/2,0,1/2) | R:(1/2,0,1/2) | $R_{1}^{S}(2) $ | |
S:(0,1/2,1/2) | T:(1/2,1/2,0) | $(S)T_{2}^{S}(2) $ | |
T:(-1/2,1/2,0) | S:(0,1/2,1/2) | $(T)S_{1}^{S}(2) $ | |
W:(-1/2,1/2,1/2) | W:(1/2,1/2,1/2) | $W_{2}^{S}(2) $ | |
X:(-1,1,1) | X:(1,1,1) | $X_{1}^{S}(2) $ | |
D:(u,1/2,1/2) | P:(1/2,1/2,-u) | $(D)P_{2}^{S}(2) $ | |
Δ:(0,v,0) | Δ:(0,v,0) | $Δ_{1}^{S}(2) $ | |
Λ:(0,0,w) | Σ:(w,0,0) | $(Λ)Σ_{1}^{S}(2) $ | |
P:(-1/2,1/2,1+w) | D:(1+w,1/2,1/2) | $(P)D_{1}^{S}(2) $ | |
Q:(-1/2,1+v,1/2) | Q:(1/2,1+v,1/2) | $Q_{1}^{S}(2) $ | |
Σ:(u,0,0) | Λ:(0,0,-u) | $(Σ)Λ_{1}^{S}(2) $ | |
A:(0,v,w) | C:(w,v,0) | $(A)C_{1}^{S}(2) $ | |
B:(u,0,w) | B:(w,0,-u) | $B_{1}^{S}(2) $ | |
C:(u,v,0) | A:(0,v,-u) | $(C)A_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(w,v,-u) | $GP_{1}^{S}(2) $ |
k-vector | k-vector-G↑ | A'↑G(4) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2)⊕Γ_{4}^{S}(2) $ | |
R:(-1/2,0,1/2) | R:(1/2,0,1/2) | $2R_{1}^{S}(2) $ | |
S:(0,1/2,1/2) | T:(1/2,1/2,0) | $(S)T_{1}^{S}(2)⊕(S)T_{2}^{S}(2) $ | |
T:(-1/2,1/2,0) | S:(0,1/2,1/2) | $(T)S_{1}^{S}(2)⊕(T)S_{2}^{S}(2) $ | |
W:(-1/2,1/2,1/2) | W:(1/2,1/2,1/2) | $W_{1}^{S}(2)⊕W_{2}^{S}(2) $ | |
X:(-1,1,1) | X:(1,1,1) | $X_{1}^{S}(2)⊕X_{4}^{S}(2) $ | |
D:(u,1/2,1/2) | P:(1/2,1/2,-u) | $(D)P_{1}^{S}(2)⊕(D)P_{2}^{S}(2) $ | |
Δ:(0,v,0) | Δ:(0,v,0) | $Δ_{1}^{S}(2)⊕Δ_{2}^{S}(2) $ | |
Λ:(0,0,w) | Σ:(w,0,0) | $2(Λ)Σ_{1}^{S}(2) $ | |
P:(-1/2,1/2,1+w) | D:(1+w,1/2,1/2) | $2(P)D_{1}^{S}(2) $ | |
Q:(-1/2,1+v,1/2) | Q:(1/2,1+v,1/2) | $2Q_{1}^{S}(2) $ | |
Σ:(u,0,0) | Λ:(0,0,-u) | $(Σ)Λ_{1}^{S}(2)⊕(Σ)Λ_{4}^{S}(2) $ | |
A:(0,v,w) | C:(w,v,0) | $2(A)C_{1}^{S}(2) $ | |
B:(u,0,w) | B:(w,0,-u) | $2B_{1}^{S}(2) $ | |
C:(u,v,0) | A:(0,v,-u) | $(C)A_{1}^{S}(2)⊕(C)A_{2}^{S}(2) $ | |
GP:(u,v,w) | GP:(w,v,-u) | $2GP_{1}^{S}(2) $ |
k-vector | k-vector-G↑ | A'↑G(4) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2)⊕Γ_{3}^{S}(2) $ | |
R:(-1/2,0,1/2) | R:(1/2,0,1/2) | $R_{1}^{S}(2)⊕R_{2}^{S}(2) $ | |
S:(0,1/2,1/2) | T:(1/2,1/2,0) | $(S)T_{1}^{S}(2)⊕(S)T_{2}^{S}(2) $ | |
T:(-1/2,1/2,0) | S:(0,1/2,1/2) | $2(T)S_{1}^{S}(2) $ | |
W:(-1/2,1/2,1/2) | W:(1/2,1/2,1/2) | $W_{1}^{S}(2)⊕W_{2}^{S}(2) $ | |
X:(-1,1,1) | X:(1,1,1) | $X_{1}^{S}(2)⊕X_{3}^{S}(2) $ | |
D:(u,1/2,1/2) | P:(1/2,1/2,-u) | $(D)P_{1}^{S}(2)⊕(D)P_{2}^{S}(2) $ | |
Δ:(0,v,0) | Δ:(0,v,0) | $2Δ_{1}^{S}(2) $ | |
Λ:(0,0,w) | Σ:(w,0,0) | $(Λ)Σ_{1}^{S}(2)⊕(Λ)Σ_{2}^{S}(2) $ | |
P:(-1/2,1/2,1+w) | D:(1+w,1/2,1/2) | $2(P)D_{1}^{S}(2) $ | |
Q:(-1/2,1+v,1/2) | Q:(1/2,1+v,1/2) | $2Q_{1}^{S}(2) $ | |
Σ:(u,0,0) | Λ:(0,0,-u) | $(Σ)Λ_{1}^{S}(2)⊕(Σ)Λ_{3}^{S}(2) $ | |
A:(0,v,w) | C:(w,v,0) | $2(A)C_{1}^{S}(2) $ | |
B:(u,0,w) | B:(w,0,-u) | $B_{1}^{S}(2)⊕B_{2}^{S}(2) $ | |
C:(u,v,0) | A:(0,v,-u) | $2(C)A_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(w,v,-u) | $2GP_{1}^{S}(2) $ |
k-vector | k-vector-G↑ | A↑G(8) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2)⊕Γ_{2}^{S}(2)⊕Γ_{3}^{S}(2)⊕Γ_{4}^{S}(2) $ | |
R:(-1/2,0,1/2) | R:(1/2,0,1/2) | $2R_{1}^{S}(2)⊕2R_{2}^{S}(2) $ | |
S:(0,1/2,1/2) | T:(1/2,1/2,0) | $2(S)T_{1}^{S}(2)⊕2(S)T_{2}^{S}(2) $ | |
T:(-1/2,1/2,0) | S:(0,1/2,1/2) | $2(T)S_{1}^{S}(2)⊕2(T)S_{2}^{S}(2) $ | |
W:(-1/2,1/2,1/2) | W:(1/2,1/2,1/2) | $2W_{1}^{S}(2)⊕2W_{2}^{S}(2) $ | |
X:(-1,1,1) | X:(1,1,1) | $X_{1}^{S}(2)⊕X_{2}^{S}(2)⊕X_{3}^{S}(2)⊕X_{4}^{S}(2) $ | |
D:(u,1/2,1/2) | P:(1/2,1/2,-u) | $2(D)P_{1}^{S}(2)⊕2(D)P_{2}^{S}(2) $ | |
Δ:(0,v,0) | Δ:(0,v,0) | $2Δ_{1}^{S}(2)⊕2Δ_{2}^{S}(2) $ | |
Λ:(0,0,w) | Σ:(w,0,0) | $2(Λ)Σ_{1}^{S}(2)⊕2(Λ)Σ_{2}^{S}(2) $ | |
P:(-1/2,1/2,1+w) | D:(1+w,1/2,1/2) | $4(P)D_{1}^{S}(2) $ | |
Q:(-1/2,1+v,1/2) | Q:(1/2,1+v,1/2) | $4Q_{1}^{S}(2) $ | |
Σ:(u,0,0) | Λ:(0,0,-u) | $(Σ)Λ_{1}^{S}(2)⊕(Σ)Λ_{2}^{S}(2)⊕(Σ)Λ_{3}^{S}(2)⊕(Σ)Λ_{4}^{S}(2) $ | |
A:(0,v,w) | C:(w,v,0) | $4(A)C_{1}^{S}(2) $ | |
B:(u,0,w) | B:(w,0,-u) | $2B_{1}^{S}(2)⊕2B_{2}^{S}(2) $ | |
C:(u,v,0) | A:(0,v,-u) | $2(C)A_{1}^{S}(2)⊕2(C)A_{2}^{S}(2) $ | |
GP:(u,v,w) | GP:(w,v,-u) | $4GP_{1}^{S}(2) $ |