The continuously infinite group ∞1 is omitted.
Coordinates | Seitz symbol |
---|---|
a, b, c | x, y, z | { 1 ‖ 1 | 0 } |
-a, -b, c | x, y, z | { 1 ‖ 2001 | 0 } |
-a, -b, -c | x, y, z | { 1 ‖ -1 | 0 } |
a, b, -c | x, y, z | { 1 ‖ m001 | 0 } |
a, -b, -c+1/2 | -x, -y, -z | { -1 ‖ 2100 | 0 0 1/2 } |
-a, b, -c+1/2 | -x, -y, -z | { -1 ‖ 2010 | 0 0 1/2 } |
-a, b, c+1/2 | -x, -y, -z | { -1 ‖ m100 | 0 0 1/2 } |
a, -b, c+1/2 | -x, -y, -z | { -1 ‖ m010 | 0 0 1/2 } |
a+1/2, b+1/2, c | x, y, z | { 1 ‖ 1 | 1/2 1/2 0 } |
-a+1/2, -b+1/2, c | x, y, z | { 1 ‖ 2001 | 1/2 1/2 0 } |
-a+1/2, -b+1/2, -c | x, y, z | { 1 ‖ -1 | 1/2 1/2 0 } |
a+1/2, b+1/2, -c | x, y, z | { 1 ‖ m001 | 1/2 1/2 0 } |
a+1/2, -b+1/2, -c+1/2 | -x, -y, -z | { -1 ‖ 2100 | 1/2 1/2 1/2 } |
-a+1/2, b+1/2, -c+1/2 | -x, -y, -z | { -1 ‖ 2010 | 1/2 1/2 1/2 } |
-a+1/2, b+1/2, c+1/2 | -x, -y, -z | { -1 ‖ m100 | 1/2 1/2 1/2 } |
a+1/2, -b+1/2, c+1/2 | -x, -y, -z | { -1 ‖ m010 | 1/2 1/2 1/2 } |
a, b, c | -x, y, z | { m ‖ 1 | 0 } |
-a, -b, c | -x, y, z | { m ‖ 2001 | 0 } |
-a, -b, -c | -x, y, z | { m ‖ -1 | 0 } |
a, b, -c | -x, y, z | { m ‖ m001 | 0 } |
a, -b, -c+1/2 | x, -y, -z | { 2 ‖ 2100 | 0 0 1/2 } |
-a, b, -c+1/2 | x, -y, -z | { 2 ‖ 2010 | 0 0 1/2 } |
-a, b, c+1/2 | x, -y, -z | { 2 ‖ m100 | 0 0 1/2 } |
a, -b, c+1/2 | x, -y, -z | { 2 ‖ m010 | 0 0 1/2 } |
a+1/2, b+1/2, c | -x, y, z | { m ‖ 1 | 1/2 1/2 0 } |
-a+1/2, -b+1/2, c | -x, y, z | { m ‖ 2001 | 1/2 1/2 0 } |
-a+1/2, -b+1/2, -c | -x, y, z | { m ‖ -1 | 1/2 1/2 0 } |
a+1/2, b+1/2, -c | -x, y, z | { m ‖ m001 | 1/2 1/2 0 } |
a+1/2, -b+1/2, -c+1/2 | x, -y, -z | { 2 ‖ 2100 | 1/2 1/2 1/2 } |
-a+1/2, b+1/2, -c+1/2 | x, -y, -z | { 2 ‖ 2010 | 1/2 1/2 1/2 } |
-a+1/2, b+1/2, c+1/2 | x, -y, -z | { 2 ‖ m100 | 1/2 1/2 1/2 } |
a+1/2, -b+1/2, c+1/2 | x, -y, -z | { 2 ‖ m010 | 1/2 1/2 1/2 } |
WP | Site symmetry | Representative |
---|---|---|
4a | $\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | (0,0,1/4 | 0,0,0) |
4b | $\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | (0,1/2,1/4 | 0,0,0) |
4c | $..\ce{^{1}{2}}/\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (0,0,0 | 0,0,z) |
4d | $..\ce{^{1}{2}}/\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (0,1/2,0 | 0,0,z) |
4e | $..\ce{^{1}{2}}/\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (1/4,1/4,0 | 0,0,z) |
4f | $..\ce{^{1}{2}}/\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (1/4,3/4,0 | 0,0,z) |
8g | $\ce{^{-1}{2}}..\ce{^{\infty m}{1}} $ | (a,0,1/4 | 0,0,0) |
8h | $.\ce{^{-1}{2}}.\ce{^{\infty m}{1}} $ | (0,b,1/4 | 0,0,0) |
8i | $..\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | (0,0,c | 0,0,z) |
8j | $..\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | (0,1/2,c | 0,0,z) |
8k | $..\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | (1/4,1/4,c | 0,0,z) |
8l | $..\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (a,b,0 | 0,0,z) |
16m | $\ce{^{1}{1}}\ce{^{\infty m}{1}} $ | (a,b,c | 0,0,z) |
Wavevector-k | Little co-group |
---|---|
Γ:(0,0,0) | $\ce{^{-1}{m}}\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ |
T:(1,0,1/2) | $\ce{^{-1}{m}}\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ |
Y:(1,0,0) | $\ce{^{-1}{m}}\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ |
Z:(0,0,1/2) | $\ce{^{-1}{m}}\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ |
R:(1/2,1/2,1/2) | $\ce{^{1}{2/}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ |
S:(1/2,1/2,0) | $\ce{^{1}{2/}}\ce{^{1}{m}}\ce{^{\infty m}{1}} $ |
A:(u,0,1/2) | $\ce{^{-1}{m}}\ce{^{2}{m}}\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
B:(0,v,1/2) | $\ce{^{2}{m}}\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
Δ:(0,v,0) | $\ce{^{2}{m}}\ce{^{-1}{m}}\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
H:(1,0,w) | $\ce{^{2}{m}}\ce{^{2}{m}}\ce{^{m}{m}}\ce{^{\infty}{1}} $ |
Λ:(0,0,w) | $ \ce{^{2}{m}}\ce{^{2}{m}}\ce{^{m}{m}}\ce{^{\infty}{1}} $ |
Σ:(u,0,0) | $\ce{^{-1}{m}}\ce{^{2}{m}}\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
D:(1/2,1/2,w) | $\ce{^{1}{2/}}\ce{^{m}{m}}\ce{^{\infty}{1}} $ |
K:(0,v,w) | $\ce{^{-1}{2/}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
M:(u,0,w) | $\ce{^{-1}{2/}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
P:(u,v,0) | $\ce{^{m}{2/}}\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
Q:(u,v,1/2) | $\ce{^{m}{2/}}\ce{^{1}{m}}\ce{^{\infty}{1}} $ |
GP:(u,v,w) | $\ce{^{m}{-1}}\ce{^{\infty}{1}} $ |
Spin Brillouin Zone
k-vector | k-vector-G↑ | Ag↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ | |
R:(1/2,1/2,-1/2) | C:(1/2,1/2,0) | $2 (R)C_{1}^{S,+}(1)$ | Spin Splitting |
S:(1/2,1/2,0) | Y:(1/2,0,0) | $2 (S)Y_{1}^{S,+}(1)$ | Spin Splitting |
T:(0,1,-1/2) | E:(1/2,1/2,1/2) | $(T)E_{1}^{S,+}(2) $ | |
Y:(0,1,0) | A:(1/2,0,1/2) | $(Y)A_{1}^{S,+}(2) $ | |
Z:(0,0,-1/2) | Z:(0,1/2,0) | $Z_{1}^{S,+}(2) $ | |
A:(u,0,-1/2) | G:(u/2,1/2,-u/2) | $(A)G_{1}^{S}(2) $ | |
B:(0,v,-1/2) | G:(v/2,1/2,v/2) | $(B)G_{1}^{S}(2) $ | |
D:(1/2,1/2,w) | W:(1/2,-w,0) | $2 (D)W_{1}^{S}(1)$ | Spin Splitting |
Δ:(0,v,0) | F:(v/2,0,v/2) | $(Δ)F_{1}^{S}(2) $ | |
H:(0,1,w) | U:(1/2,-w,1/2) | $(H)U_{1}^{S}(2) $ | |
Λ:(0,0,w) | Λ:(0,-w,0) | $Λ_{1}^{S}(2) $ | |
Σ:(u,0,0) | F:(u/2,0,-u/2) | $(Σ)F_{1}^{S}(2) $ | |
K:(0,v,w) | GP:(v/2,-w,v/2) | $(K)GP_{1}^{S}(2) $ | |
M:(u,0,w) | GP:(u/2,-w,-u/2) | $(M)GP_{1}^{S}(2) $ | |
P:(u,v,0) | F:(u/2+v/2,0,-u/2+v/2) | $2(P)F_{1}^{S}(1)$ | Spin Splitting |
Q:(u,v,-1/2) | G:(u/2+v/2,1/2,-u/2+v/2) | $2(Q)G_{1}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(u/2+v/2,-w,-u/2+v/2) | $2GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | Ag↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ | |
R:(1/2,1/2,-1/2) | C:(1/2,1/2,0) | $2 (R)C_{2}^{S,-}(1)$ | Spin Splitting |
S:(1/2,1/2,0) | Y:(1/2,0,0) | $2 (S)Y_{2}^{S,-}(1)$ | Spin Splitting |
T:(0,1,-1/2) | E:(1/2,1/2,1/2) | $(T)E_{2}^{S,-}(2) $ | |
Y:(0,1,0) | A:(1/2,0,1/2) | $(Y)A_{2}^{S,-}(2) $ | |
Z:(0,0,-1/2) | Z:(0,1/2,0) | $Z_{1}^{S,+}(2) $ | |
A:(u,0,-1/2) | G:(u/2,1/2,-u/2) | $(A)G_{1}^{S}(2) $ | |
B:(0,v,-1/2) | G:(v/2,1/2,v/2) | $(B)G_{1}^{S}(2) $ | |
D:(1/2,1/2,w) | W:(1/2,-w,0) | $2 (D)W_{2}^{S}(1)$ | Spin Splitting |
Δ:(0,v,0) | F:(v/2,0,v/2) | $(Δ)F_{1}^{S}(2) $ | |
H:(0,1,w) | U:(1/2,-w,1/2) | $(H)U_{2}^{S}(2) $ | |
Λ:(0,0,w) | Λ:(0,-w,0) | $Λ_{1}^{S}(2) $ | |
Σ:(u,0,0) | F:(u/2,0,-u/2) | $(Σ)F_{1}^{S}(2) $ | |
K:(0,v,w) | GP:(v/2,-w,v/2) | $(K)GP_{1}^{S}(2) $ | |
M:(u,0,w) | GP:(u/2,-w,-u/2) | $(M)GP_{1}^{S}(2) $ | |
P:(u,v,0) | F:(u/2+v/2,0,-u/2+v/2) | $2(P)F_{1}^{S}(1)$ | Spin Splitting |
Q:(u,v,-1/2) | G:(u/2+v/2,1/2,-u/2+v/2) | $2(Q)G_{1}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(u/2+v/2,-w,-u/2+v/2) | $2GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | Ag↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ | |
R:(1/2,1/2,-1/2) | C:(1/2,1/2,0) | $2 (R)C_{2}^{S,+}(1)$ | Spin Splitting |
S:(1/2,1/2,0) | Y:(1/2,0,0) | $2 (S)Y_{2}^{S,-}(1)$ | Spin Splitting |
T:(0,1,-1/2) | E:(1/2,1/2,1/2) | $(T)E_{2}^{S,+}(2) $ | |
Y:(0,1,0) | A:(1/2,0,1/2) | $(Y)A_{2}^{S,-}(2) $ | |
Z:(0,0,-1/2) | Z:(0,1/2,0) | $Z_{1}^{S,-}(2) $ | |
A:(u,0,-1/2) | G:(u/2,1/2,-u/2) | $(A)G_{2}^{S}(2) $ | |
B:(0,v,-1/2) | G:(v/2,1/2,v/2) | $(B)G_{2}^{S}(2) $ | |
D:(1/2,1/2,w) | W:(1/2,-w,0) | $2 (D)W_{2}^{S}(1)$ | Spin Splitting |
Δ:(0,v,0) | F:(v/2,0,v/2) | $(Δ)F_{1}^{S}(2) $ | |
H:(0,1,w) | U:(1/2,-w,1/2) | $(H)U_{2}^{S}(2) $ | |
Λ:(0,0,w) | Λ:(0,-w,0) | $Λ_{1}^{S}(2) $ | |
Σ:(u,0,0) | F:(u/2,0,-u/2) | $(Σ)F_{1}^{S}(2) $ | |
K:(0,v,w) | GP:(v/2,-w,v/2) | $(K)GP_{1}^{S}(2) $ | |
M:(u,0,w) | GP:(u/2,-w,-u/2) | $(M)GP_{1}^{S}(2) $ | |
P:(u,v,0) | F:(u/2+v/2,0,-u/2+v/2) | $2(P)F_{1}^{S}(1)$ | Spin Splitting |
Q:(u,v,-1/2) | G:(u/2+v/2,1/2,-u/2+v/2) | $2(Q)G_{2}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(u/2+v/2,-w,-u/2+v/2) | $2GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | Ag↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ | |
R:(1/2,1/2,-1/2) | C:(1/2,1/2,0) | $2 (R)C_{2}^{S,-}(1)$ | Spin Splitting |
S:(1/2,1/2,0) | Y:(1/2,0,0) | $2 (S)Y_{2}^{S,-}(1)$ | Spin Splitting |
T:(0,1,-1/2) | E:(1/2,1/2,1/2) | $(T)E_{1}^{S,+}(2) $ | |
Y:(0,1,0) | A:(1/2,0,1/2) | $(Y)A_{1}^{S,+}(2) $ | |
Z:(0,0,-1/2) | Z:(0,1/2,0) | $Z_{1}^{S,+}(2) $ | |
A:(u,0,-1/2) | G:(u/2,1/2,-u/2) | $(A)G_{1}^{S}(2) $ | |
B:(0,v,-1/2) | G:(v/2,1/2,v/2) | $(B)G_{1}^{S}(2) $ | |
D:(1/2,1/2,w) | W:(1/2,-w,0) | $2 (D)W_{2}^{S}(1)$ | Spin Splitting |
Δ:(0,v,0) | F:(v/2,0,v/2) | $(Δ)F_{1}^{S}(2) $ | |
H:(0,1,w) | U:(1/2,-w,1/2) | $(H)U_{1}^{S}(2) $ | |
Λ:(0,0,w) | Λ:(0,-w,0) | $Λ_{1}^{S}(2) $ | |
Σ:(u,0,0) | F:(u/2,0,-u/2) | $(Σ)F_{1}^{S}(2) $ | |
K:(0,v,w) | GP:(v/2,-w,v/2) | $(K)GP_{1}^{S}(2) $ | |
M:(u,0,w) | GP:(u/2,-w,-u/2) | $(M)GP_{1}^{S}(2) $ | |
P:(u,v,0) | F:(u/2+v/2,0,-u/2+v/2) | $2(P)F_{1}^{S}(1)$ | Spin Splitting |
Q:(u,v,-1/2) | G:(u/2+v/2,1/2,-u/2+v/2) | $2(Q)G_{1}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(u/2+v/2,-w,-u/2+v/2) | $2GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | A↑G(4) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{1}^{S,-}(2) $ | |
R:(1/2,1/2,-1/2) | C:(1/2,1/2,0) | $2 (R)C_{1}^{S,+}(1)⊕2 (R)C_{1}^{S,-}(1)$ | Spin Splitting |
S:(1/2,1/2,0) | Y:(1/2,0,0) | $2 (S)Y_{1}^{S,+}(1)⊕2 (S)Y_{1}^{S,-}(1)$ | Spin Splitting |
T:(0,1,-1/2) | E:(1/2,1/2,1/2) | $(T)E_{1}^{S,+}(2)⊕(T)E_{1}^{S,-}(2) $ | |
Y:(0,1,0) | A:(1/2,0,1/2) | $(Y)A_{1}^{S,+}(2)⊕(Y)A_{1}^{S,-}(2) $ | |
Z:(0,0,-1/2) | Z:(0,1/2,0) | $Z_{1}^{S,+}(2)⊕Z_{1}^{S,-}(2) $ | |
A:(u,0,-1/2) | G:(u/2,1/2,-u/2) | $(A)G_{1}^{S}(2)⊕(A)G_{2}^{S}(2) $ | |
B:(0,v,-1/2) | G:(v/2,1/2,v/2) | $(B)G_{1}^{S}(2)⊕(B)G_{2}^{S}(2) $ | |
D:(1/2,1/2,w) | W:(1/2,-w,0) | $4 (D)W_{1}^{S}(1)$ | Spin Splitting |
Δ:(0,v,0) | F:(v/2,0,v/2) | $(Δ)F_{1}^{S}(2)⊕(Δ)F_{2}^{S}(2) $ | |
H:(0,1,w) | U:(1/2,-w,1/2) | $2(H)U_{1}^{S}(2) $ | |
Λ:(0,0,w) | Λ:(0,-w,0) | $2Λ_{1}^{S}(2) $ | |
Σ:(u,0,0) | F:(u/2,0,-u/2) | $(Σ)F_{1}^{S}(2)⊕(Σ)F_{2}^{S}(2) $ | |
K:(0,v,w) | GP:(v/2,-w,v/2) | $2(K)GP_{1}^{S}(2) $ | |
M:(u,0,w) | GP:(u/2,-w,-u/2) | $2(M)GP_{1}^{S}(2) $ | |
P:(u,v,0) | F:(u/2+v/2,0,-u/2+v/2) | $2 (P)F_{1}^{S}(1)⊕2 (P)F_{2}^{S}(1)$ | Spin Splitting |
Q:(u,v,-1/2) | G:(u/2+v/2,1/2,-u/2+v/2) | $2(Q)G_{1}^{S}(1)⊕2(Q)G_{2}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(u/2+v/2,-w,-u/2+v/2) | $4GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | A↑G(4) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{1}^{S,-}(2) $ | |
R:(1/2,1/2,-1/2) | C:(1/2,1/2,0) | $2 (R)C_{2}^{S,+}(1)⊕2 (R)C_{2}^{S,-}(1)$ | Spin Splitting |
S:(1/2,1/2,0) | Y:(1/2,0,0) | $2 (S)Y_{2}^{S,+}(1)⊕2 (S)Y_{2}^{S,-}(1)$ | Spin Splitting |
T:(0,1,-1/2) | E:(1/2,1/2,1/2) | $(T)E_{2}^{S,+}(2)⊕(T)E_{2}^{S,-}(2) $ | |
Y:(0,1,0) | A:(1/2,0,1/2) | $(Y)A_{2}^{S,+}(2)⊕(Y)A_{2}^{S,-}(2) $ | |
Z:(0,0,-1/2) | Z:(0,1/2,0) | $Z_{1}^{S,+}(2)⊕Z_{1}^{S,-}(2) $ | |
A:(u,0,-1/2) | G:(u/2,1/2,-u/2) | $(A)G_{1}^{S}(2)⊕(A)G_{2}^{S}(2) $ | |
B:(0,v,-1/2) | G:(v/2,1/2,v/2) | $(B)G_{1}^{S}(2)⊕(B)G_{2}^{S}(2) $ | |
D:(1/2,1/2,w) | W:(1/2,-w,0) | $4 (D)W_{2}^{S}(1)$ | Spin Splitting |
Δ:(0,v,0) | F:(v/2,0,v/2) | $(Δ)F_{1}^{S}(2)⊕(Δ)F_{2}^{S}(2) $ | |
H:(0,1,w) | U:(1/2,-w,1/2) | $2(H)U_{2}^{S}(2) $ | |
Λ:(0,0,w) | Λ:(0,-w,0) | $2Λ_{1}^{S}(2) $ | |
Σ:(u,0,0) | F:(u/2,0,-u/2) | $(Σ)F_{1}^{S}(2)⊕(Σ)F_{2}^{S}(2) $ | |
K:(0,v,w) | GP:(v/2,-w,v/2) | $2(K)GP_{1}^{S}(2) $ | |
M:(u,0,w) | GP:(u/2,-w,-u/2) | $2(M)GP_{1}^{S}(2) $ | |
P:(u,v,0) | F:(u/2+v/2,0,-u/2+v/2) | $2 (P)F_{1}^{S}(1)⊕2 (P)F_{2}^{S}(1)$ | Spin Splitting |
Q:(u,v,-1/2) | G:(u/2+v/2,1/2,-u/2+v/2) | $2(Q)G_{1}^{S}(1)⊕2(Q)G_{2}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(u/2+v/2,-w,-u/2+v/2) | $4GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | A↑G(4) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{1}^{S,-}(2) $ | |
R:(1/2,1/2,-1/2) | C:(1/2,1/2,0) | $2 (R)C_{2}^{S,+}(1)⊕2 (R)C_{2}^{S,-}(1)$ | Spin Splitting |
S:(1/2,1/2,0) | Y:(1/2,0,0) | $2 (S)Y_{2}^{S,+}(1)⊕2 (S)Y_{2}^{S,-}(1)$ | Spin Splitting |
T:(0,1,-1/2) | E:(1/2,1/2,1/2) | $(T)E_{1}^{S,+}(2)⊕(T)E_{1}^{S,-}(2) $ | |
Y:(0,1,0) | A:(1/2,0,1/2) | $(Y)A_{1}^{S,+}(2)⊕(Y)A_{1}^{S,-}(2) $ | |
Z:(0,0,-1/2) | Z:(0,1/2,0) | $Z_{1}^{S,+}(2)⊕Z_{1}^{S,-}(2) $ | |
A:(u,0,-1/2) | G:(u/2,1/2,-u/2) | $(A)G_{1}^{S}(2)⊕(A)G_{2}^{S}(2) $ | |
B:(0,v,-1/2) | G:(v/2,1/2,v/2) | $(B)G_{1}^{S}(2)⊕(B)G_{2}^{S}(2) $ | |
D:(1/2,1/2,w) | W:(1/2,-w,0) | $4 (D)W_{2}^{S}(1)$ | Spin Splitting |
Δ:(0,v,0) | F:(v/2,0,v/2) | $(Δ)F_{1}^{S}(2)⊕(Δ)F_{2}^{S}(2) $ | |
H:(0,1,w) | U:(1/2,-w,1/2) | $2(H)U_{1}^{S}(2) $ | |
Λ:(0,0,w) | Λ:(0,-w,0) | $2Λ_{1}^{S}(2) $ | |
Σ:(u,0,0) | F:(u/2,0,-u/2) | $(Σ)F_{1}^{S}(2)⊕(Σ)F_{2}^{S}(2) $ | |
K:(0,v,w) | GP:(v/2,-w,v/2) | $2(K)GP_{1}^{S}(2) $ | |
M:(u,0,w) | GP:(u/2,-w,-u/2) | $2(M)GP_{1}^{S}(2) $ | |
P:(u,v,0) | F:(u/2+v/2,0,-u/2+v/2) | $2 (P)F_{1}^{S}(1)⊕2 (P)F_{2}^{S}(1)$ | Spin Splitting |
Q:(u,v,-1/2) | G:(u/2+v/2,1/2,-u/2+v/2) | $2(Q)G_{1}^{S}(1)⊕2(Q)G_{2}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(u/2+v/2,-w,-u/2+v/2) | $4GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | A'↑G(4) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{2}^{S,-}(2) $ | |
R:(1/2,1/2,-1/2) | C:(1/2,1/2,0) | $2 (R)C_{1}^{S,+}(1)⊕2 (R)C_{2}^{S,-}(1)$ | Spin Splitting |
S:(1/2,1/2,0) | Y:(1/2,0,0) | $2 (S)Y_{1}^{S,+}(1)⊕2 (S)Y_{2}^{S,-}(1)$ | Spin Splitting |
T:(0,1,-1/2) | E:(1/2,1/2,1/2) | $(T)E_{1}^{S,+}(2)⊕(T)E_{2}^{S,-}(2) $ | |
Y:(0,1,0) | A:(1/2,0,1/2) | $(Y)A_{1}^{S,+}(2)⊕(Y)A_{2}^{S,-}(2) $ | |
Z:(0,0,-1/2) | Z:(0,1/2,0) | $Z_{1}^{S,+}(2)⊕Z_{1}^{S,-}(2) $ | |
A:(u,0,-1/2) | G:(u/2,1/2,-u/2) | $2 (A)G_{1}^{S}(2) $ | |
B:(0,v,-1/2) | G:(v/2,1/2,v/2) | $2 (B)G_{1}^{S}(2) $ | |
D:(1/2,1/2,w) | W:(1/2,-w,0) | $2 (D)W_{1}^{S}(1)⊕ 2(D)W_{2}^{S}(1)$ | Spin Splitting |
Δ:(0,v,0) | F:(v/2,0,v/2) | $2 (Δ)F_{1}^{S}(2) $ | |
H:(0,1,w) | U:(1/2,-w,1/2) | $(H)U_{2}^{S}(2)⊕ (H)U_{1}^{S}(2) $ | |
Λ:(0,0,w) | Λ:(0,-w,0) | $Λ_{1}^{S}(2)⊕ Λ_{2}^{S}(2) $ | |
Σ:(u,0,0) | F:(u/2,0,-u/2) | $2 (Σ)F_{1}^{S}(2) $ | |
K:(0,v,w) | GP:(v/2,-w,v/2) | $2(K)GP_{1}^{S}(2) $ | |
M:(u,0,w) | GP:(u/2,-w,-u/2) | $2(M)GP_{1}^{S}(2) $ | |
P:(u,v,0) | F:(u/2+v/2,0,-u/2+v/2) | $4 (P)F_{1}^{S}(1)$ | Spin Splitting |
Q:(u,v,-1/2) | G:(u/2+v/2,1/2,-u/2+v/2) | $4(Q)G_{1}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(u/2+v/2,-w,-u/2+v/2) | $4GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | A↑G(8) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{1}^{S,-}(2)⊕Γ_{2}^{S,+}(2)⊕Γ_{2}^{S,-}(2) $ | |
R:(1/2,1/2,-1/2) | C:(1/2,1/2,0) | $2 (R)C_{1}^{S,+}(1)⊕2 (R)C_{1}^{S,-}(1)⊕2 (R)C_{2}^{S,+}(1)⊕2 (R)C_{2}^{S,-}(1)$ | Spin Splitting |
S:(1/2,1/2,0) | Y:(1/2,0,0) | $2 (S)Y_{1}^{S,+}(1)⊕2 (S)Y_{1}^{S,-}(1)⊕2 (S)Y_{2}^{S,+}(1)⊕2 (S)Y_{2}^{S,-}(1)$ | Spin Splitting |
T:(0,1,-1/2) | E:(1/2,1/2,1/2) | $(T)E_{1}^{S,+}(2)⊕(T)E_{1}^{S,-}(2)⊕(T)E_{2}^{S,+}(2)⊕(T)E_{2}^{S,-}(2) $ | |
Y:(0,1,0) | A:(1/2,0,1/2) | $(Y)A_{1}^{S,+}(2)⊕(Y)A_{1}^{S,-}(2)⊕(Y)A_{2}^{S,+}(2)⊕(Y)A_{2}^{S,-}(2) $ | |
Z:(0,0,-1/2) | Z:(0,1/2,0) | $Z_{1}^{S,+}(2)⊕Z_{1}^{S,-}(2)⊕Z_{2}^{S,+}(2)⊕Z_{2}^{S,-}(2) $ | |
A:(u,0,-1/2) | G:(u/2,1/2,-u/2) | $2(A)G_{1}^{S}(2)⊕4(A)G_{2}^{S}(2) $ | |
B:(0,v,-1/2) | G:(v/2,1/2,v/2) | $2(B)G_{1}^{S}(2)⊕2(B)G_{2}^{S}(2) $ | |
D:(1/2,1/2,w) | W:(1/2,-w,0) | $4(D)W_{1}^{S}(1)⊕4(D)W_{2}^{S}(1)$ | Spin Splitting |
Δ:(0,v,0) | F:(v/2,0,v/2) | $2(Δ)F_{1}^{S}(2)⊕2(Δ)F_{2}^{S}(2) $ | |
H:(0,1,w) | U:(1/2,-w,1/2) | $2(H)U_{1}^{S}(2)⊕2(H)U_{2}^{S}(2) $ | |
Λ:(0,0,w) | Λ:(0,-w,0) | $2Λ_{1}^{S}(2)⊕2Λ_{2}^{S}(2) $ | |
Σ:(u,0,0) | F:(u/2,0,-u/2) | $2(Σ)F_{1}^{S}(2)⊕2(Σ)F_{2}^{S}(2) $ | |
K:(0,v,w) | GP:(v/2,-w,v/2) | $4(K)GP_{1}^{S}(2) $ | |
M:(u,0,w) | GP:(u/2,-w,-u/2) | $4(M)GP_{1}^{S}(2) $ | |
P:(u,v,0) | F:(u/2+v/2,0,-u/2+v/2) | $4(P)F_{1}^{S}(1)⊕4(P)F_{2}^{S}(1)$ | Spin Splitting |
Q:(u,v,-1/2) | G:(u/2+v/2,1/2,-u/2+v/2) | $4(Q)G_{1}^{S}(1)⊕4(Q)G_{2}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(u/2+v/2,-w,-u/2+v/2) | $8GP_{1}^{S}(1)$ | Spin Splitting |