The continuously infinite group ∞1 is omitted.
Coordinates | Seitz symbol |
---|---|
a, b, c | x, y, z | { 1 ‖ 1 | 0 } |
-a, -b, c | x, y, z | { 1 ‖ 2001 | 0 } |
-a, b, c+1/2 | -x, -y, -z | { -1 ‖ m100 | 0 0 1/2 } |
a, -b, c+1/2 | -x, -y, -z | { -1 ‖ m010 | 0 0 1/2 } |
a, b+1/2, c+1/2 | x, y, z | { 1 ‖ 1 | 0 1/2 1/2 } |
-a, -b+1/2, c+1/2 | x, y, z | { 1 ‖ 2001 | 0 1/2 1/2 } |
-a, b+1/2, c | -x, -y, -z | { -1 ‖ m100 | 0 1/2 0 } |
a, -b+1/2, c | -x, -y, -z | { -1 ‖ m010 | 0 1/2 0 } |
a, b, c | -x, y, z | { m ‖ 1 | 0 } |
-a, -b, c | -x, y, z | { m ‖ 2001 | 0 } |
-a, b, c+1/2 | x, -y, -z | { 2 ‖ m100 | 0 0 1/2 } |
a, -b, c+1/2 | x, -y, -z | { 2 ‖ m010 | 0 0 1/2 } |
a, b+1/2, c+1/2 | -x, y, z | { m ‖ 1 | 0 1/2 1/2 } |
-a, -b+1/2, c+1/2 | -x, y, z | { m ‖ 2001 | 0 1/2 1/2 } |
-a, b+1/2, c | x, -y, -z | { 2 ‖ m100 | 0 1/2 0 } |
a, -b+1/2, c | x, -y, -z | { 2 ‖ m010 | 0 1/2 0 } |
WP | Site symmetry | Representative |
---|---|---|
4a | $..\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | (0,0,c | 0,0,z) |
4b | $..\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | (1/2,0,c | 0,0,z) |
4c | $.\ce{^{-1}{m}}.\ce{^{\infty m}{1}} $ | (a,1/4,c | 0,0,0) |
8d | $\ce{^{1}{1}}\ce{^{\infty m}{1}} $ | (a,b,c | 0,0,z) |
Wavevector-k | Little co-group |
---|---|
Γ:(0,0,0) | $\ce{^{-1}{m}}\ce{^{-1}{m}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ |
T:(1,0,1/2) | $\ce{^{-1}{m}}\ce{^{-1}{m}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ |
Y:(1,0,0) | $\ce{^{-1}{m}}\ce{^{-1}{m}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ |
Z:(0,0,1/2) | $\ce{^{-1}{m}}\ce{^{-1}{m}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ |
R:(1/2,1/2,1/2) | $\ce{^{1}{2}}\ce{^{\infty m}{1}} $ |
S:(1/2,1/2,0) | $\ce{^{1}{2}}\ce{^{\infty m}{1}} $ |
A:(u,0,1/2) | $\ce{^{-1}{m}}\ce{^{2}{m}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
B:(0,v,1/2) | $\ce{^{2}{m}}\ce{^{-1}{m}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
Δ:(0,v,0) | $\ce{^{2}{m}}\ce{^{-1}{m}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
H:(1,0,w) | $\ce{^{2}{m}}\ce{^{2}{m}}\ce{^{1}{2}}\ce{^{\infty}{1}} $ |
Λ:(0,0,w) | $ \ce{^{2}{m}}\ce{^{2}{m}}\ce{^{1}{2}}\ce{^{\infty}{1}} $ |
Σ:(u,0,0) | $\ce{^{-1}{m}}\ce{^{2}{m}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
D:(1/2,1/2,w) | $\ce{^{1}{2}}\ce{^{\infty}{1}} $ |
K:(0,v,w) | $\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
M:(u,0,w) | $\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
P:(u,v,0) | $\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
Q:(u,v,1/2) | $\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
GP:(u,v,w) | $\ce{^{1}{1}}\ce{^{\infty}{1}} $ |
Spin Brillouin Zone
k-vector | k-vector-G↑ | A↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2) $ | |
R:(1/2,-1/2,-1/2) | L:(1/2,1/2,1/2) | $2 (R)L_{1}^{S}(1)$ | Spin Splitting |
S:(0,-1/2,-1/2) | V:(1/2,1/2,0) | $2 (S)V_{1}^{S}(1)$ | Spin Splitting |
T:(1/2,0,-1) | M:(0,1,1/2) | $(T)M_{1}^{S}(2) $ | |
Y:(0,0,-1) | Y:(0,1,0) | $Y_{1}^{S}(2) $ | |
Z:(1/2,0,0) | A:(0,0,1/2) | $(Z)A_{1}^{S}(2) $ | |
A:(1/2,0,w) | U:(0,-w,1/2) | $(A)U_{1}^{S}(2) $ | |
B:(1/2,v,0) | B:(-v,0,1/2) | $B_{1}^{S}(2) $ | |
D:(u,1/2,-1/2) | GP:(-1/2,1/2,u) | $2 (D)GP_{1}^{S}(1)$ | Spin Splitting |
Δ:(0,v,0) | B:(-v,0,0) | $(Δ)B_{1}^{S}(2) $ | |
H:(u,-1,0) | B:(1,0,u) | $(H)B_{1}^{S}(2) $ | |
Λ:(u,0,0) | B:(0,0,u) | $(Λ)B_{1}^{S}(2) $ | |
Σ:(0,0,w) | Λ:(0,-w,0) | $(Σ)Λ_{1}^{S}(2) $ | |
K:(u,v,0) | B:(-v,0,u) | $(K)B_{1}^{S}(2) $ | |
M:(u,0,w) | GP:(0,-w,u) | $(M)GP_{1}^{S}(2) $ | |
P:(0,v,w) | GP:(-v,-w,0) | $2 (P)GP_{1}^{S}(1)$ | Spin Splitting |
Q:(1/2,v,w) | GP:(-v,-w,1/2) | $2(Q)GP_{1}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(-v,-w,u) | $2GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | A↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2) $ | |
R:(1/2,-1/2,-1/2) | L:(1/2,1/2,1/2) | $2 (R)L_{1}^{S}(1)$ | Spin Splitting |
S:(0,-1/2,-1/2) | V:(1/2,1/2,0) | $2 (S)V_{1}^{S}(1)$ | Spin Splitting |
T:(1/2,0,-1) | M:(0,1,1/2) | $(T)M_{2}^{S}(2) $ | |
Y:(0,0,-1) | Y:(0,1,0) | $Y_{1}^{S}(2) $ | |
Z:(1/2,0,0) | A:(0,0,1/2) | $(Z)A_{2}^{S}(2) $ | |
A:(1/2,0,w) | U:(0,-w,1/2) | $(A)U_{2}^{S}(2) $ | |
B:(1/2,v,0) | B:(-v,0,1/2) | $B_{1}^{S}(2) $ | |
D:(u,1/2,-1/2) | GP:(-1/2,1/2,u) | $2 (D)GP_{1}^{S}(1)$ | Spin Splitting |
Δ:(0,v,0) | B:(-v,0,0) | $(Δ)B_{1}^{S}(2) $ | |
H:(u,-1,0) | B:(1,0,u) | $(H)B_{1}^{S}(2) $ | |
Λ:(u,0,0) | B:(0,0,u) | $(Λ)B_{1}^{S}(2) $ | |
Σ:(0,0,w) | Λ:(0,-w,0) | $(Σ)Λ_{1}^{S}(2) $ | |
K:(u,v,0) | B:(-v,0,u) | $(K)B_{1}^{S}(2) $ | |
M:(u,0,w) | GP:(0,-w,u) | $(M)GP_{1}^{S}(2) $ | |
P:(0,v,w) | GP:(-v,-w,0) | $2(P)GP_{1}^{S}(1)$ | Spin Splitting |
Q:(1/2,v,w) | GP:(-v,-w,1/2) | $2(Q)GP_{1}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(-v,-w,u) | $2GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | A↑G(4) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2)⊕Γ_{2}^{S}(2) $ | |
R:(1/2,-1/2,-1/2) | L:(1/2,1/2,1/2) | $4(R)L_{1}^{S}(1)$ | Spin Splitting |
S:(0,-1/2,-1/2) | V:(1/2,1/2,0) | $4(S)V_{1}^{S}(1)$ | Spin Splitting |
T:(1/2,0,-1) | M:(0,1,1/2) | $(T)M_{1}^{S}(2)⊕(T)M_{2}^{S}(2) $ | |
Y:(0,0,-1) | Y:(0,1,0) | $Y_{1}^{S}(2)⊕Y_{2}^{S}(2) $ | |
Z:(1/2,0,0) | A:(0,0,1/2) | $(Z)A_{1}^{S}(2)⊕(Z)A_{2}^{S}(2) $ | |
A:(1/2,0,w) | U:(0,-w,1/2) | $(A)U_{1}^{S}(2)⊕(A)U_{2}^{S}(2) $ | |
B:(1/2,v,0) | B:(-v,0,1/2) | $2B_{1}^{S}(2) $ | |
D:(u,1/2,-1/2) | GP:(-1/2,1/2,u) | $4(D)GP_{1}^{S}(1)$ | Spin Splitting |
Δ:(0,v,0) | B:(-v,0,0) | $2(Δ)B_{1}^{S}(2) $ | |
H:(u,-1,0) | B:(1,0,u) | $2(H)B_{1}^{S}(2) $ | |
Λ:(u,0,0) | B:(0,0,u) | $2(Λ)B_{1}^{S}(2) $ | |
Σ:(0,0,w) | Λ:(0,-w,0) | $(Σ)Λ_{1}^{S}(2)⊕(Σ)Λ_{2}^{S}(2) $ | |
K:(u,v,0) | B:(-v,0,u) | $2(K)B_{1}^{S}(2) $ | |
M:(u,0,w) | GP:(0,-w,u) | $2(M)GP_{1}^{S}(2) $ | |
P:(0,v,w) | GP:(-v,-w,0) | $4(P)GP_{1}^{S}(1)$ | Spin Splitting |
Q:(1/2,v,w) | GP:(-v,-w,1/2) | $4(Q)GP_{1}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(-v,-w,u) | $4GP_{1}^{S}(1)$ | Spin Splitting |