The continuously infinite group ∞1 is omitted.
Coordinates | Seitz symbol |
---|---|
a, b, c | x, y, z | { 1 ‖ 1 | 0 } |
-a, -b, c | x, y, z | { 1 ‖ 2001 | 0 } |
a, -b, -c | -x, -y, -z | { -1 ‖ 2100 | 0 } |
-a, b, -c | -x, -y, -z | { -1 ‖ 2010 | 0 } |
a, b+1/2, c+1/2 | x, y, z | { 1 ‖ 1 | 0 1/2 1/2 } |
-a, -b+1/2, c+1/2 | x, y, z | { 1 ‖ 2001 | 0 1/2 1/2 } |
a, -b+1/2, -c+1/2 | -x, -y, -z | { -1 ‖ 2100 | 0 1/2 1/2 } |
-a, b+1/2, -c+1/2 | -x, -y, -z | { -1 ‖ 2010 | 0 1/2 1/2 } |
a+1/2, b, c+1/2 | x, y, z | { 1 ‖ 1 | 1/2 0 1/2 } |
-a+1/2, -b, c+1/2 | x, y, z | { 1 ‖ 2001 | 1/2 0 1/2 } |
a+1/2, -b, -c+1/2 | -x, -y, -z | { -1 ‖ 2100 | 1/2 0 1/2 } |
-a+1/2, b, -c+1/2 | -x, -y, -z | { -1 ‖ 2010 | 1/2 0 1/2 } |
a+1/2, b+1/2, c | x, y, z | { 1 ‖ 1 | 1/2 1/2 0 } |
-a+1/2, -b+1/2, c | x, y, z | { 1 ‖ 2001 | 1/2 1/2 0 } |
a+1/2, -b+1/2, -c | -x, -y, -z | { -1 ‖ 2100 | 1/2 1/2 0 } |
-a+1/2, b+1/2, -c | -x, -y, -z | { -1 ‖ 2010 | 1/2 1/2 0 } |
a, b, c | -x, y, z | { m ‖ 1 | 0 } |
-a, -b, c | -x, y, z | { m ‖ 2001 | 0 } |
a, -b, -c | x, -y, -z | { 2 ‖ 2100 | 0 } |
-a, b, -c | x, -y, -z | { 2 ‖ 2010 | 0 } |
a, b+1/2, c+1/2 | -x, y, z | { m ‖ 1 | 0 1/2 1/2 } |
-a, -b+1/2, c+1/2 | -x, y, z | { m ‖ 2001 | 0 1/2 1/2 } |
a, -b+1/2, -c+1/2 | x, -y, -z | { 2 ‖ 2100 | 0 1/2 1/2 } |
-a, b+1/2, -c+1/2 | x, -y, -z | { 2 ‖ 2010 | 0 1/2 1/2 } |
a+1/2, b, c+1/2 | -x, y, z | { m ‖ 1 | 1/2 0 1/2 } |
-a+1/2, -b, c+1/2 | -x, y, z | { m ‖ 2001 | 1/2 0 1/2 } |
a+1/2, -b, -c+1/2 | x, -y, -z | { 2 ‖ 2100 | 1/2 0 1/2 } |
-a+1/2, b, -c+1/2 | x, -y, -z | { 2 ‖ 2010 | 1/2 0 1/2 } |
a+1/2, b+1/2, c | -x, y, z | { m ‖ 1 | 1/2 1/2 0 } |
-a+1/2, -b+1/2, c | -x, y, z | { m ‖ 2001 | 1/2 1/2 0 } |
a+1/2, -b+1/2, -c | x, -y, -z | { 2 ‖ 2100 | 1/2 1/2 0 } |
-a+1/2, b+1/2, -c | x, -y, -z | { 2 ‖ 2010 | 1/2 1/2 0 } |
WP | Site symmetry | Representative |
---|---|---|
4a | $\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | (0,0,0 | 0,0,0) |
4b | $\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | (0,0,1/2 | 0,0,0) |
4c | $\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | (1/4,1/4,1/4 | 0,0,0) |
4d | $\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | (1/4,1/4,3/4 | 0,0,0) |
8e | $\ce{^{-1}{2}}..\ce{^{\infty m}{1}} $ | (a,0,0 | 0,0,0) |
8f | $.\ce{^{-1}{2}}.\ce{^{\infty m}{1}} $ | (0,b,0 | 0,0,0) |
8g | $..\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | (0,0,c | 0,0,z) |
8h | $..\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | (1/4,1/4,c | 0,0,z) |
8i | $.\ce{^{-1}{2}}.\ce{^{\infty m}{1}} $ | (1/4,b,1/4 | 0,0,0) |
8j | $\ce{^{-1}{2}}..\ce{^{\infty m}{1}} $ | (a,1/4,1/4 | 0,0,0) |
16k | $\ce{^{1}{1}}\ce{^{\infty m}{1}} $ | (a,b,c | 0,0,z) |
Wavevector-k | Little co-group |
---|---|
Γ:(0,0,0) | $\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ |
T:(1,0,0) | $\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ |
Y:(0,1,0) | $\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ |
Z:(0,0,1) | $\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{1}{2}}\ce{^{\infty m}{1}} $ |
L:(1/2,1/2,1/2) | $\ce{^{1}{1}}\ce{^{\infty m}{1}} $ |
A:(u,0,1) | $\ce{^{2}{2}}\ce{^{-1}{2}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
B:(0,v,1) | $\ce{^{-1}{2}}\ce{^{2}{2}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
Δ:(0,v,0) | $\ce{^{-1}{2}}\ce{^{2}{2}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
H:(0,1,w) | $\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{1}{2}}\ce{^{\infty}{1}} $ |
Λ:(0,0,w) | $\ce{^{-1}{2}}\ce{^{-1}{2}}\ce{^{1}{2}}\ce{^{\infty}{1}} $ |
Σ:(u,0,0) | $\ce{^{2}{2}}\ce{^{-1}{2}}\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
E:(0,v,w) | $\ce{^{-1}{2}}\ce{^{\infty}{1}} $ |
J:(u,0,w) | $\ce{^{-1}{2}}\ce{^{\infty}{1}} $ |
M:(u,v,0) | $\ce{^{m}{2}}\ce{^{\infty}{1}} $ |
GP:(u,v,w) | $\ce{^{1}{1}}\ce{^{\infty}{1}} $ |
Spin Brillouin Zone
k-vector | k-vector-G↑ | A↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2) $ | |
L:(1/2,1/2,-1/2) | V:(1/2,1/2,0) | $2 (L)V_{1}^{S}(1)$ | Spin Splitting |
T:(0,1,-1) | M:(0,1,1/2) | $(T)M_{1}^{S}(2) $ | |
Y:(0,1,0) | A:(0,0,1/2) | $(Y)A_{1}^{S}(2) $ | |
Z:(0,0,-1) | Y:(0,1,0) | $(Z)Y_{1}^{S}(2) $ | |
A:(1+u,1,0) | B:(1+u,0,-u/2) | $(A)B_{1}^{S}(2) $ | |
B:(1,1+v,0) | B:(1,0,v/2) | $B_{1}^{S}(2) $ | |
Δ:(0,v,0) | B:(0,0,v/2) | $(Δ)B_{1}^{S}(2) $ | |
H:(0,1,w) | U:(0,-w,1/2) | $(H)U_{1}^{S}(2) $ | |
Λ:(0,0,w) | Λ:(0,-w,0) | $Λ_{1}^{S}(2) $ | |
Σ:(u,0,0) | B:(u,0,-u/2) | $(Σ)B_{1}^{S}(2) $ | |
E:(0,v,w) | GP:(0,-w,v/2) | $(E)GP_{1}^{S}(2) $ | |
J:(u,0,w) | GP:(u,-w,-u/2) | $(J)GP_{1}^{S}(2) $ | |
M:(u,v,0) | B:(u,0,-u/2+v/2) | $2(M)B_{1}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(u,-w,-u/2+v/2) | $2GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | A↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2) $ | |
L:(1/2,1/2,-1/2) | V:(1/2,1/2,0) | $2 (L)V_{1}^{S}(1)$ | Spin Splitting |
T:(0,1,-1) | M:(0,1,1/2) | $(T)M_{2}^{S}(2) $ | |
Y:(0,1,0) | A:(0,0,1/2) | $(Y)A_{2}^{S}(2) $ | |
Z:(0,0,-1) | Y:(0,1,0) | $(Z)Y_{1}^{S}(2) $ | |
A:(1+u,1,0) | B:(1+u,0,-u/2) | $(A)B_{1}^{S}(2) $ | |
B:(1,1+v,0) | B:(1,0,v/2) | $B_{1}^{S}(2) $ | |
Δ:(0,v,0) | B:(0,0,v/2) | $(Δ)B_{1}^{S}(2) $ | |
H:(0,1,w) | U:(0,-w,1/2) | $(H)U_{2}^{S}(2) $ | |
Λ:(0,0,w) | Λ:(0,-w,0) | $Λ_{1}^{S}(2) $ | |
Σ:(u,0,0) | B:(u,0,-u/2) | $(Σ)B_{1}^{S}(2) $ | |
E:(0,v,w) | GP:(0,-w,v/2) | $(E)GP_{1}^{S}(2) $ | |
J:(u,0,w) | GP:(u,-w,-u/2) | $(J)GP_{1}^{S}(2) $ | |
M:(u,v,0) | B:(u,0,-u/2+v/2) | $2(M)B_{1}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(u,-w,-u/2+v/2) | $2GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | A↑G(4) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2)⊕Γ_{2}^{S}(2) $ | |
L:(1/2,1/2,-1/2) | V:(1/2,1/2,0) | $4(L)V_{1}^{S}(1)$ | Spin Splitting |
T:(0,1,-1) | M:(0,1,1/2) | $(T)M_{1}^{S}(2)⊕(T)M_{2}^{S}(2) $ | |
Y:(0,1,0) | A:(0,0,1/2) | $(Y)A_{1}^{S}(2)⊕(Y)A_{2}^{S}(2) $ | |
Z:(0,0,-1) | Y:(0,1,0) | $(Z)Y_{1}^{S}(2)⊕(Z)Y_{2}^{S}(2) $ | |
A:(1+u,1,0) | B:(1+u,0,-u/2) | $2(A)B_{1}^{S}(2) $ | |
B:(1,1+v,0) | B:(1,0,v/2) | $2B_{1}^{S}(2) $ | |
Δ:(0,v,0) | B:(0,0,v/2) | $2(Δ)B_{1}^{S}(2) $ | |
H:(0,1,w) | U:(0,-w,1/2) | $(H)U_{1}^{S}(2)⊕(H)U_{2}^{S}(2) $ | |
Λ:(0,0,w) | Λ:(0,-w,0) | $Λ_{1}^{S}(2)⊕Λ_{2}^{S}(2) $ | |
Σ:(u,0,0) | B:(u,0,-u/2) | $2(Σ)B_{1}^{S}(2) $ | |
E:(0,v,w) | GP:(0,-w,v/2) | $2(E)GP_{1}^{S}(2) $ | |
J:(u,0,w) | GP:(u,-w,-u/2) | $2(J)GP_{1}^{S}(2) $ | |
M:(u,v,0) | B:(u,0,-u/2+v/2) | $4(M)B_{1}^{S}(1)$ | Spin Splitting |
GP:(u,v,w) | GP:(u,-w,-u/2+v/2) | $4GP_{1}^{S}(1)$ | Spin Splitting |