The continuously infinite group ∞1 is omitted.
Coordinates | Seitz symbol |
---|---|
a, b, c | x, y, z | { 1 ‖ 1 | 0 } |
-a, -b, -c | x, y, z | { 1 ‖ -1 | 0 } |
-a, b, -c+1/2 | -x, -y, -z | { -1 ‖ 2010 | 0 0 1/2 } |
a, -b, c+1/2 | -x, -y, -z | { -1 ‖ m010 | 0 0 1/2 } |
a+1/2, b+1/2, c | x, y, z | { 1 ‖ 1 | 1/2 1/2 0 } |
-a+1/2, -b+1/2, -c | x, y, z | { 1 ‖ -1 | 1/2 1/2 0 } |
-a+1/2, b+1/2, -c+1/2 | -x, -y, -z | { -1 ‖ 2010 | 1/2 1/2 1/2 } |
a+1/2, -b+1/2, c+1/2 | -x, -y, -z | { -1 ‖ m010 | 1/2 1/2 1/2 } |
a, b, c | -x, y, z | { m ‖ 1 | 0 } |
-a, -b, -c | -x, y, z | { m ‖ -1 | 0 } |
-a, b, -c+1/2 | x, -y, -z | { 2 ‖ 2010 | 0 0 1/2 } |
a, -b, c+1/2 | x, -y, -z | { 2 ‖ m010 | 0 0 1/2 } |
a+1/2, b+1/2, c | -x, y, z | { m ‖ 1 | 1/2 1/2 0 } |
-a+1/2, -b+1/2, -c | -x, y, z | { m ‖ -1 | 1/2 1/2 0 } |
-a+1/2, b+1/2, -c+1/2 | x, -y, -z | { 2 ‖ 2010 | 1/2 1/2 1/2 } |
a+1/2, -b+1/2, c+1/2 | x, -y, -z | { 2 ‖ m010 | 1/2 1/2 1/2 } |
WP | Site symmetry | Representative |
---|---|---|
4a | $\ce{^{1}{-1}}\ce{^{\infty m}{1}} $ | (0,0,0 | 0,0,z) |
4b | $\ce{^{1}{-1}}\ce{^{\infty m}{1}} $ | (0,1/2,0 | 0,0,z) |
4c | $\ce{^{1}{-1}}\ce{^{\infty m}{1}} $ | (1/4,1/4,0 | 0,0,z) |
4d | $\ce{^{1}{-1}}\ce{^{\infty m}{1}} $ | (1/4,1/4,1/2 | 0,0,z) |
4e | $\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (0,b,1/4 | 0,0,0) |
8f | $\ce{^{1}{1}}\ce{^{\infty m}{1}} $ | (a,b,c | 0,0,z) |
Wavevector-k | Little co-group |
---|---|
A:(0,0,1/2) | $\ce{^{-1}{2/}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
Γ:(0,0,0) | $\ce{^{-1}{2/}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
M:(0,1,1/2) | $\ce{^{-1}{2/}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
Y:(0,1,0) | $\ce{^{-1}{2/}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
L:(1/2,1/2,1/2) | $\ce{^{1}{-1}}\ce{^{\infty m}{1}} $ |
V:(1/2,1/2,0) | $\ce{^{1}{-1}}\ce{^{\infty m}{1}} $ |
B:(u,0,w) | $\ce{^{-1}{2/}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
Λ:(0,v,0) | $\ce{^{2}{2/}}\ce{^{-1}{m}}\ce{^{\infty}{1}} $ |
U:(0,v,1/2) | $\ce{^{2}{2/}}\ce{^{-1}{m}}\ce{^{\infty}{1}} $ |
GP:(u,v,w) | $\ce{^{m}{-1}}\ce{^{\infty}{1}} $ |
Spin Brillouin Zone
k-vector | k-vector-G↑ | Ag↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ | |
A:(0,0,1/2) | Z:(0,0,1/2) | $(A)Z_{1}^{S,+}(2) $ | |
L:(1/2,1/2,1/2) | U:(1/2,0,1/2) | $2 (L)U_{1}^{S,+}(1)$ | Spin Splitting |
M:(0,1,1/2) | R:(1/2,1/2,1/2) | $(M)R_{1}^{S,+}(2) $ | |
V:(1/2,1/2,0) | X:(1/2,0,0) | $2(V)X_{1}^{S,+}(1)$ | Spin Splitting |
Y:(0,1,0) | V:(1/2,1/2,0) | $(Y)V_{1}^{S,+}(2) $ | |
Λ:(0,v,0) | GP:(v/2,v/2,0) | $(Λ)GP_{1}^{S}(2) $ | |
U:(0,v,1/2) | GP:(v/2,v/2,1/2) | $(U)GP_{1}^{S}(2) $ | |
B:(u,0,w) | GP:(u/2,-u/2,w) | $(B)GP_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u/2+v/2,-u/2+v/2,w) | $2GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | Ag↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ | |
A:(0,0,1/2) | Z:(0,0,1/2) | $(A)Z_{1}^{S,+}(2) $ | |
L:(1/2,1/2,1/2) | U:(1/2,0,1/2) | $2 (L)U_{1}^{S,-}(1)$ | Spin Splitting |
M:(0,1,1/2) | R:(1/2,1/2,1/2) | $(M)R_{1}^{S,+}(2) $ | |
V:(1/2,1/2,0) | X:(1/2,0,0) | $2(V)X_{1}^{S,-}(1)$ | Spin Splitting |
Y:(0,1,0) | V:(1/2,1/2,0) | $(Y)V_{1}^{S,+}(2) $ | |
Λ:(0,v,0) | GP:(v/2,v/2,0) | $(Λ)GP_{1}^{S}(2) $ | |
U:(0,v,1/2) | GP:(v/2,v/2,1/2) | $(U)GP_{1}^{S}(2) $ | |
B:(u,0,w) | GP:(u/2,-u/2,w) | $(B)GP_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u/2+v/2,-u/2+v/2,w) | $2GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | Ag↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ | |
A:(0,0,1/2) | Z:(0,0,1/2) | $(A)Z_{1}^{S,+}(2) $ | |
L:(1/2,1/2,1/2) | U:(1/2,0,1/2) | $2(L)U_{1}^{S,+}(1)$ | Spin Splitting |
M:(0,1,1/2) | R:(1/2,1/2,1/2) | $(M)R_{1}^{S,-}(2) $ | |
V:(1/2,1/2,0) | X:(1/2,0,0) | $2 (V)X_{1}^{S,+}(1)$ | Spin Splitting |
Y:(0,1,0) | V:(1/2,1/2,0) | $(Y)V_{1}^{S,-}(2) $ | |
Λ:(0,v,0) | GP:(v/2,v/2,0) | $(Λ)GP_{1}^{S}(2) $ | |
U:(0,v,1/2) | GP:(v/2,v/2,1/2) | $(U)GP_{1}^{S}(2) $ | |
B:(u,0,w) | GP:(u/2,-u/2,w) | $(B)GP_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u/2+v/2,-u/2+v/2,w) | $2GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | Ag↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ | |
A:(0,0,1/2) | Z:(0,0,1/2) | $(A)Z_{1}^{S,+}(2) $ | |
L:(1/2,1/2,1/2) | U:(1/2,0,1/2) | $2(L)U_{1}^{S,-}(1)$ | Spin Splitting |
M:(0,1,1/2) | R:(1/2,1/2,1/2) | $(M)R_{1}^{S,-}(2) $ | |
V:(1/2,1/2,0) | X:(1/2,0,0) | $2 (V)X_{1}^{S,-}(1)$ | Spin Splitting |
Y:(0,1,0) | V:(1/2,1/2,0) | $(Y)V_{1}^{S,-}(2) $ | |
Λ:(0,v,0) | GP:(v/2,v/2,0) | $(Λ)GP_{1}^{S}(2) $ | |
U:(0,v,1/2) | GP:(v/2,v/2,1/2) | $(U)GP_{1}^{S}(2) $ | |
B:(u,0,w) | GP:(u/2,-u/2,w) | $(B)GP_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u/2+v/2,-u/2+v/2,w) | $2GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | A↑G(4) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{1}^{S,-}(2) $ | |
A:(0,0,1/2) | Z:(0,0,1/2) | $(A)Z_{1}^{S,+}(2)⊕(A)Z_{1}^{S,-}(2) $ | |
L:(1/2,1/2,1/2) | U:(1/2,0,1/2) | $2 (L)U_{1}^{S,+}(1)⊕2 (L)U_{1}^{S,-}(1)$ | Spin Splitting |
M:(0,1,1/2) | R:(1/2,1/2,1/2) | $(M)R_{1}^{S,+}(2)⊕(M)R_{1}^{S,-}(2) $ | |
V:(1/2,1/2,0) | X:(1/2,0,0) | $2(V)X_{1}^{S,+}(1)⊕2(V)X_{1}^{S,-}(1)$ | Spin Splitting |
Y:(0,1,0) | V:(1/2,1/2,0) | $(Y)V_{1}^{S,+}(2)⊕(Y)V_{1}^{S,-}(2) $ | |
Λ:(0,v,0) | GP:(v/2,v/2,0) | $2(Λ)GP_{1}^{S}(2) $ | |
U:(0,v,1/2) | GP:(v/2,v/2,1/2) | $2(U)GP_{1}^{S}(2) $ | |
B:(u,0,w) | GP:(u/2,-u/2,w) | $2(B)GP_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u/2+v/2,-u/2+v/2,w) | $4GP_{1}^{S}(1)$ | Spin Splitting |