The continuously infinite group ∞1 is omitted.
Coordinates | Seitz symbol |
---|---|
a, b, c | x, y, z | { 1 ‖ 1 | 0 } |
-a, -b, -c | x, y, z | { 1 ‖ -1 | 0 } |
-a, b+1/2, -c+1/2 | -x, -y, -z | { -1 ‖ 2010 | 0 1/2 1/2 } |
a, -b+1/2, c+1/2 | -x, -y, -z | { -1 ‖ m010 | 0 1/2 1/2 } |
a, b, c | -x, y, z | { m ‖ 1 | 0 } |
-a, -b, -c | -x, y, z | { m ‖ -1 | 0 } |
-a, b+1/2, -c+1/2 | x, -y, -z | { 2 ‖ 2010 | 0 1/2 1/2 } |
a, -b+1/2, c+1/2 | x, -y, -z | { 2 ‖ m010 | 0 1/2 1/2 } |
WP | Site symmetry | Representative |
---|---|---|
2a | $\ce{^{1}{-1}}\ce{^{\infty m}{1}} $ | (0,0,0 | 0,0,z) |
2b | $\ce{^{1}{-1}}\ce{^{\infty m}{1}} $ | (1/2,0,0 | 0,0,z) |
2c | $\ce{^{1}{-1}}\ce{^{\infty m}{1}} $ | (0,0,1/2 | 0,0,z) |
2d | $\ce{^{1}{-1}}\ce{^{\infty m}{1}} $ | (1/2,0,1/2 | 0,0,z) |
4e | $\ce{^{1}{1}}\ce{^{\infty m}{1}} $ | (a,b,c | 0,0,z) |
Wavevector-k | Little co-group |
---|---|
A:(1/2,0,1/2) | $\ce{^{-1}{2/}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
B:(0,0,1/2) | $\ce{^{-1}{2/}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
C:(1/2,1/2,0) | $\ce{^{-1}{2/}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
D:(0,1/2,1/2) | $\ce{^{-1}{2/}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
E:(1/2,1/2,1/2) | $\ce{^{-1}{2/}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
Γ:(0,0,0) | $\ce{^{-1}{2/}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
Y:(1/2,0,0) | $\ce{^{-1}{2/}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
Z:(0,1/2,0) | $\ce{^{-1}{2/}}\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ |
F:(u,0,w) | $\ce{^{-1}{2/}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
G:(u,1/2,w) | $\ce{^{-1}{2/}}\ce{^{2}{m}}\ce{^{\infty}{1}} $ |
Λ:(0,v,0) | $\ce{^{2}{2/}}\ce{^{-1}{m}}\ce{^{\infty}{1}} $ |
U:(1/2,v,1/2) | $\ce{^{2}{2/}}\ce{^{-1}{m}}\ce{^{\infty}{1}} $ |
V:(0,v,1/2) | $\ce{^{2}{2/}}\ce{^{-1}{m}}\ce{^{\infty}{1}} $ |
W:(1/2,v,0) | $\ce{^{2}{2/}}\ce{^{-1}{m}}\ce{^{\infty}{1}} $ |
GP:(u,v,w) | $\ce{^{m}{-1}}\ce{^{\infty}{1}} $ |
Spin Brillouin Zone
k-vector | k-vector-G↑ | Ag↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ | |
A:(1/2,0,1/2) | U:(1/2,0,1/2) | $(A)U_{1}^{S,+}(2) $ | |
B:(0,0,1/2) | Z:(0,0,1/2) | $(B)Z_{1}^{S,+}(2) $ | |
C:(1/2,1/2,0) | V:(1/2,1/2,0) | $(C)V_{1}^{S,+}(2) $ | |
D:(0,1/2,1/2) | T:(0,1/2,1/2) | $(D)T_{1}^{S,+}(2) $ | |
E:(1/2,1/2,1/2) | R:(1/2,1/2,1/2) | $(E)R_{1}^{S,+}(2) $ | |
Y:(1/2,0,0) | X:(1/2,0,0) | $(Y)X_{1}^{S,+}(2) $ | |
Z:(0,1/2,0) | Y:(0,1/2,0) | $(Z)Y_{1}^{S,+}(2) $ | |
Λ:(0,v,0) | GP:(0,v,0) | $(Λ)GP_{1}^{S}(2) $ | |
U:(1/2,v,1/2) | GP:(1/2,v,1/2) | $(U)GP_{1}^{S}(2) $ | |
V:(0,v,1/2) | GP:(0,v,1/2) | $(V)GP_{1}^{S}(2) $ | |
W:(1/2,v,0) | GP:(1/2,v,0) | $(W)GP_{1}^{S}(2) $ | |
F:(u,0,w) | GP:(u,0,w) | $(F)GP_{1}^{S}(2) $ | |
G:(u,1/2,w) | GP:(u,1/2,w) | $(G)GP_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u,v,w) | $2GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | Ag↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ | |
A:(1/2,0,1/2) | U:(1/2,0,1/2) | $(A)U_{1}^{S,-}(2) $ | |
B:(0,0,1/2) | Z:(0,0,1/2) | $(B)Z_{1}^{S,-}(2) $ | |
C:(1/2,1/2,0) | V:(1/2,1/2,0) | $(C)V_{1}^{S,+}(2) $ | |
D:(0,1/2,1/2) | T:(0,1/2,1/2) | $(D)T_{1}^{S,-}(2) $ | |
E:(1/2,1/2,1/2) | R:(1/2,1/2,1/2) | $(E)R_{1}^{S,-}(2) $ | |
Y:(1/2,0,0) | X:(1/2,0,0) | $(Y)X_{1}^{S,+}(2) $ | |
Z:(0,1/2,0) | Y:(0,1/2,0) | $(Z)Y_{1}^{S,+}(2) $ | |
Λ:(0,v,0) | GP:(0,v,0) | $(Λ)GP_{1}^{S}(2) $ | |
U:(1/2,v,1/2) | GP:(1/2,v,1/2) | $(U)GP_{1}^{S}(2) $ | |
V:(0,v,1/2) | GP:(0,v,1/2) | $(V)GP_{1}^{S}(2) $ | |
W:(1/2,v,0) | GP:(1/2,v,0) | $(W)GP_{1}^{S}(2) $ | |
F:(u,0,w) | GP:(u,0,w) | $(F)GP_{1}^{S}(2) $ | |
G:(u,1/2,w) | GP:(u,1/2,w) | $(G)GP_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u,v,w) | $2GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | Ag↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ | |
A:(1/2,0,1/2) | U:(1/2,0,1/2) | $(A)U_{1}^{S,-}(2) $ | |
B:(0,0,1/2) | Z:(0,0,1/2) | $(B)Z_{1}^{S,+}(2) $ | |
C:(1/2,1/2,0) | V:(1/2,1/2,0) | $(C)V_{1}^{S,-}(2) $ | |
D:(0,1/2,1/2) | T:(0,1/2,1/2) | $(D)T_{1}^{S,+}(2) $ | |
E:(1/2,1/2,1/2) | R:(1/2,1/2,1/2) | $(E)R_{1}^{S,+}(2) $ | |
Y:(1/2,0,0) | X:(1/2,0,0) | $(Y)X_{1}^{S,-}(2) $ | |
Z:(0,1/2,0) | Y:(0,1/2,0) | $(Z)Y_{1}^{S,+}(2) $ | |
Λ:(0,v,0) | GP:(0,v,0) | $(Λ)GP_{1}^{S}(2) $ | |
U:(1/2,v,1/2) | GP:(1/2,v,1/2) | $(U)GP_{1}^{S}(2) $ | |
V:(0,v,1/2) | GP:(0,v,1/2) | $(V)GP_{1}^{S}(2) $ | |
W:(1/2,v,0) | GP:(1/2,v,0) | $(W)GP_{1}^{S}(2) $ | |
F:(u,0,w) | GP:(u,0,w) | $(F)GP_{1}^{S}(2) $ | |
G:(u,1/2,w) | GP:(u,1/2,w) | $(G)GP_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u,v,w) | $2GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | Ag↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ | |
A:(1/2,0,1/2) | U:(1/2,0,1/2) | $(A)U_{1}^{S,-}(2) $ | |
B:(0,0,1/2) | Z:(0,0,1/2) | $(B)Z_{1}^{S,+}(2) $ | |
C:(1/2,1/2,0) | V:(1/2,1/2,0) | $(C)V_{1}^{S,+}(2) $ | |
D:(0,1/2,1/2) | T:(0,1/2,1/2) | $(D)T_{1}^{S,-}(2) $ | |
E:(1/2,1/2,1/2) | R:(1/2,1/2,1/2) | $(E)R_{1}^{S,+}(2) $ | |
Y:(1/2,0,0) | X:(1/2,0,0) | $(Y)X_{1}^{S,-}(2) $ | |
Z:(0,1/2,0) | Y:(0,1/2,0) | $(Z)Y_{1}^{S,-}(2) $ | |
Λ:(0,v,0) | GP:(0,v,0) | $(Λ)GP_{1}^{S}(2) $ | |
U:(1/2,v,1/2) | GP:(1/2,v,1/2) | $(U)GP_{1}^{S}(2) $ | |
V:(0,v,1/2) | GP:(0,v,1/2) | $(V)GP_{1}^{S}(2) $ | |
W:(1/2,v,0) | GP:(1/2,v,0) | $(W)GP_{1}^{S}(2) $ | |
F:(u,0,w) | GP:(u,0,w) | $(F)GP_{1}^{S}(2) $ | |
G:(u,1/2,w) | GP:(u,1/2,w) | $(G)GP_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u,v,w) | $2GP_{1}^{S}(1)$ | Spin Splitting |
k-vector | k-vector-G↑ | A↑G(4) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{1}^{S,-}(2) $ | |
A:(1/2,0,1/2) | U:(1/2,0,1/2) | $(A)U_{1}^{S,+}(2)⊕(A)U_{1}^{S,-}(2) $ | |
B:(0,0,1/2) | Z:(0,0,1/2) | $(B)Z_{1}^{S,+}(2)⊕(B)Z_{1}^{S,-}(2) $ | |
C:(1/2,1/2,0) | V:(1/2,1/2,0) | $(C)V_{1}^{S,+}(2)⊕(C)V_{1}^{S,-}(2) $ | |
D:(0,1/2,1/2) | T:(0,1/2,1/2) | $(D)T_{1}^{S,+}(2)⊕T_{1}^{S,-}(2) $ | |
E:(1/2,1/2,1/2) | R:(1/2,1/2,1/2) | $(E)R_{1}^{S,+}(2)⊕R_{1}^{S,-}(2) $ | |
Y:(1/2,0,0) | X:(1/2,0,0) | $(Y)X_{1}^{S,+}(2)⊕(Y)X_{1}^{S,-}(2) $ | |
Z:(0,1/2,0) | Y:(0,1/2,0) | $(Z)Y_{1}^{S,+}(2)⊕(Z)Y_{1}^{S,-}(2) $ | |
Λ:(0,v,0) | GP:(0,v,0) | $2(Λ)GP_{1}^{S}(2) $ | |
U:(1/2,v,1/2) | GP:(1/2,v,1/2) | $2(U)GP_{1}^{S}(2) $ | |
V:(0,v,1/2) | GP:(0,v,1/2) | $2(V)GP_{1}^{S}(2) $ | |
W:(1/2,v,0) | GP:(1/2,v,0) | $2(W)GP_{1}^{S}(2) $ | |
F:(u,0,w) | GP:(u,0,w) | $2(F)GP_{1}^{S}(2) $ | |
G:(u,1/2,w) | GP:(u,1/2,w) | $2(G)GP_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u,v,w) | $4GP_{1}^{S}(1)$ | Spin Splitting |