The continuously infinite group ∞1 is omitted.
Coordinates | Seitz symbol |
---|---|
a, b, c | x, y, z | { 1 ‖ 1 | 0 } |
-a, b, -c | x, y, z | { 1 ‖ 2010 | 0 } |
-a, -b, -c | x, y, z | { 1 ‖ -1 | 0 } |
a, -b, c | x, y, z | { 1 ‖ m010 | 0 } |
a+1/2, b+1/2, c | x, y, z | { 1 ‖ 1 | 1/2 1/2 0 } |
-a+1/2, b+1/2, -c | x, y, z | { 1 ‖ 2010 | 1/2 1/2 0 } |
-a+1/2, -b+1/2, -c | x, y, z | { 1 ‖ -1 | 1/2 1/2 0 } |
a+1/2, -b+1/2, c | x, y, z | { 1 ‖ m010 | 1/2 1/2 0 } |
a+1/2, b, c | -x, -y, -z | { -1 ‖ 1 | 1/2 0 0 } |
-a+1/2, b, -c | -x, -y, -z | { -1 ‖ 2010 | 1/2 0 0 } |
-a+1/2, -b, -c | -x, -y, -z | { -1 ‖ -1 | 1/2 0 0 } |
a+1/2, -b, c | -x, -y, -z | { -1 ‖ m010 | 1/2 0 0 } |
a, b+1/2, c | -x, -y, -z | { -1 ‖ 1 | 0 1/2 0 } |
-a, b+1/2, -c | -x, -y, -z | { -1 ‖ 2010 | 0 1/2 0 } |
-a, -b+1/2, -c | -x, -y, -z | { -1 ‖ -1 | 0 1/2 0 } |
a, -b+1/2, c | -x, -y, -z | { -1 ‖ m010 | 0 1/2 0 } |
a, b, c | -x, y, z | { m ‖ 1 | 0 } |
-a, b, -c | -x, y, z | { m ‖ 2010 | 0 } |
-a, -b, -c | -x, y, z | { m ‖ -1 | 0 } |
a, -b, c | -x, y, z | { m ‖ m010 | 0 } |
a+1/2, b+1/2, c | -x, y, z | { m ‖ 1 | 1/2 1/2 0 } |
-a+1/2, b+1/2, -c | -x, y, z | { m ‖ 2010 | 1/2 1/2 0 } |
-a+1/2, -b+1/2, -c | -x, y, z | { m ‖ -1 | 1/2 1/2 0 } |
a+1/2, -b+1/2, c | -x, y, z | { m ‖ m010 | 1/2 1/2 0 } |
a+1/2, b, c | x, -y, -z | { 2 ‖ 1 | 1/2 0 0 } |
-a+1/2, b, -c | x, -y, -z | { 2 ‖ 2010 | 1/2 0 0 } |
-a+1/2, -b, -c | x, -y, -z | { 2 ‖ -1 | 1/2 0 0 } |
a+1/2, -b, c | x, -y, -z | { 2 ‖ m010 | 1/2 0 0 } |
a, b+1/2, c | x, -y, -z | { 2 ‖ 1 | 0 1/2 0 } |
-a, b+1/2, -c | x, -y, -z | { 2 ‖ 2010 | 0 1/2 0 } |
-a, -b+1/2, -c | x, -y, -z | { 2 ‖ -1 | 0 1/2 0 } |
a, -b+1/2, c | x, -y, -z | { 2 ‖ m010 | 0 1/2 0 } |
WP | Site symmetry | Representative |
---|---|---|
4a | $\ce{^{1}{2}}/\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (0,0,0 | 0,0,z) |
4b | $\ce{^{1}{2}}/\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (0,1/4,0 | 0,0,0) |
4c | $\ce{^{1}{2}}/\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (0,0,1/2 | 0,0,z) |
4d | $\ce{^{-1}{2}}/\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (1/4,0,0 | 0,0,0) |
4e | $\ce{^{-1}{2}}/\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (1/4,1/4,0 | 0,0,0) |
4f | $\ce{^{1}{2}}/\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (0,1/4,1/2 | 0,0,0) |
4g | $\ce{^{-1}{2}}/\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (1/4,0,1/2 | 0,0,0) |
4h | $\ce{^{-1}{2}}/\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (1/4,1/4,1/2 | 0,0,0) |
8i | $\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | (0,b,0 | 0,0,z) |
8j | $\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (1/4,b,0 | 0,0,0) |
8k | $\ce{^{1}{2}}\ce{^{\infty m}{1}} $ | (0,b,1/2 | 0,0,z) |
8l | $\ce{^{-1}{2}}\ce{^{\infty m}{1}} $ | (1/4,b,1/2 | 0,0,0) |
8m | $\ce{^{1}{m}}\ce{^{\infty m}{1}} $ | (a,0,c | 0,0,z) |
8n | $\ce{^{-1}{m}}\ce{^{\infty m}{1}} $ | (a,1/4,c | 0,0,0) |
16o | $\ce{^{1}{1}}\ce{^{\infty m}{1}} $ | (a,b,c | 0,0,z) |
Wavevector-k | Little co-group |
---|---|
A:(0,0,1/2) | $\ce{^{1}{2/}}\ce{^{1}{m}}\ce{^{\infty /mm}{1}} $ |
Γ:(0,0,0) | $\ce{^{1}{2/}}\ce{^{1}{m}}\ce{^{\infty /mm}{1}} $ |
M:(0,1,1/2) | $\ce{^{1}{2/}}\ce{^{1}{m}}\ce{^{\infty /mm}{1}} $ |
Y:(0,1,0) | $\ce{^{1}{2/}}\ce{^{1}{m}}\ce{^{\infty /mm}{1}} $ |
L:(1/2,1/2,1/2) | $\ce{^{1}{-1}}\ce{^{\infty /mm}{1}} $ |
V:(1/2,1/2,0) | $\ce{^{1}{-1}}\ce{^{\infty /mm}{1}} $ |
B:(u,0,w) | $\ce{^{m}{2/}}\ce{^{1}{m}}\ce{^{\infty 2}{1}} $ |
Λ:(0,v,0) | $\ce{^{1}{2/}}\ce{^{m}{m}}\ce{^{\infty 2}{1}} $ |
U:(0,v,1/2) | $\ce{^{1}{2/}}\ce{^{m}{m}}\ce{^{\infty 2}{1}} $ |
GP:(u,v,w) | $\ce{^{m}{-1}}\ce{^{\infty 2}{1}} $ |
Spin Brillouin Zone
k-vector | A↑G(8) |
A:(0,0,1/2) | $A_{1}^{S,+}(2)⊕A_{1}^{S,-}(2)⊕A_{2}^{S,+}(2)⊕A_{2}^{S,-}(2) $ |
Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{1}^{S,-}(2)⊕Γ_{2}^{S,+}(2)⊕Γ_{2}^{S,-}(2) $ |
M:(0,1,1/2) | $M_{1}^{S,+}(2)⊕M_{1}^{S,-}(2)⊕M_{2}^{S,+}(2)⊕M_{2}^{S,-}(2) $ |
Y:(0,1,0) | $Y_{1}^{S,+}(2)⊕Y_{1}^{S,-}(2)⊕Y_{2}^{S,+}(2)⊕Y_{2}^{S,-}(2) $ |
L:(1/2,1/2,1/2) | $2L_{1}^{S,+}(2)⊕2L_{1}^{S,-}(2) $ |
V:(1/2,1/2,0) | $2V_{1}^{S,+}(2)⊕2V_{1}^{S,-}(2) $ |
B:(u,0,w) | $2B_{1}^{S}(2)⊕2B_{2}^{S}(2) $ |
Λ:(0,v,0) | $2Λ_{1}^{S}(2)⊕2Λ_{2}^{S}(2) $ |
U:(0,v,1/2) | $2U_{1}^{S}(2)⊕2U_{2}^{S}(2) $ |
GP:(u,v,w) | $4GP_{1}^{S}(2) $ |
k-vector | Ag↑G(2) |
A:(0,0,1/2) | $A_{1}^{S,+}(2) $ |
Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ |
M:(0,1,1/2) | $M_{1}^{S,+}(2) $ |
Y:(0,1,0) | $Y_{1}^{S,+}(2) $ |
L:(1/2,1/2,1/2) | $L_{1}^{S,+}(2) $ |
V:(1/2,1/2,0) | $V_{1}^{S,+}(2) $ |
B:(u,0,w) | $B_{1}^{S}(2) $ |
Λ:(0,v,0) | $Λ_{1}^{S}(2) $ |
U:(0,v,1/2) | $U_{1}^{S}(2) $ |
GP:(u,v,w) | $GP_{1}^{S}(2) $ |
k-vector | Ag↑G(2) |
A:(0,0,1/2) | $A_{2}^{S,-}(2) $ |
Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ |
M:(0,1,1/2) | $M_{2}^{S,-}(2) $ |
Y:(0,1,0) | $Y_{1}^{S,+}(2) $ |
L:(1/2,1/2,1/2) | $L_{1}^{S,-}(2) $ |
V:(1/2,1/2,0) | $V_{1}^{S,+}(2) $ |
B:(u,0,w) | $B_{1}^{S}(2) $ |
Λ:(0,v,0) | $Λ_{1}^{S}(2) $ |
U:(0,v,1/2) | $U_{2}^{S}(2) $ |
GP:(u,v,w) | $GP_{1}^{S}(2) $ |
k-vector | A↑G(4) |
A:(0,0,1/2) | $A_{1}^{S,+}(2)⊕A_{1}^{S,-}(2) $ |
Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{1}^{S,-}(2) $ |
M:(0,1,1/2) | $M_{1}^{S,+}(2)⊕M_{1}^{S,-}(2) $ |
Y:(0,1,0) | $Y_{1}^{S,+}(2)⊕Y_{1}^{S,-}(2) $ |
L:(1/2,1/2,1/2) | $L_{1}^{S,+}(2)⊕L_{1}^{S,-}(2) $ |
V:(1/2,1/2,0) | $V_{1}^{S,+}(2)⊕V_{1}^{S,-}(2) $ |
B:(u,0,w) | $B_{1}^{S}(2)⊕B_{2}^{S}(2) $ |
Λ:(0,v,0) | $2Λ_{1}^{S}(2) $ |
U:(0,v,1/2) | $2U_{1}^{S}(2) $ |
GP:(u,v,w) | $2GP_{1}^{S}(2) $ |
k-vector | A↑G(4) |
A:(0,0,1/2) | $A_{2}^{S,+}(2)⊕A_{2}^{S,-}(2) $ |
Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{1}^{S,-}(2) $ |
M:(0,1,1/2) | $M_{2}^{S,+}(2)⊕M_{2}^{S,-}(2) $ |
Y:(0,1,0) | $Y_{1}^{S,+}(2)⊕Y_{1}^{S,-}(2) $ |
L:(1/2,1/2,1/2) | $L_{1}^{S,+}(2)⊕L_{1}^{S,-}(2) $ |
V:(1/2,1/2,0) | $V_{1}^{S,+}(2)⊕V_{1}^{S,-}(2) $ |
B:(u,0,w) | $B_{1}^{S}(2)⊕B_{2}^{S}(2) $ |
Λ:(0,v,0) | $2Λ_{1}^{S}(2) $ |
U:(0,v,1/2) | $2U_{2}^{S}(2) $ |
GP:(u,v,w) | $2GP_{1}^{S}(2) $ |
k-vector | A'↑G(4) |
A:(0,0,1/2) | $A_{1}^{S,+}(2)⊕A_{2}^{S,-}(2) $ |
Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{2}^{S,-}(2) $ |
M:(0,1,1/2) | $M_{1}^{S,+}(2)⊕M_{2}^{S,-}(2) $ |
Y:(0,1,0) | $Y_{1}^{S,+}(2)⊕Y_{2}^{S,-}(2) $ |
L:(1/2,1/2,1/2) | $L_{1}^{S,+}(2)⊕L_{1}^{S,-}(2) $ |
V:(1/2,1/2,0) | $V_{1}^{S,+}(2)⊕V_{1}^{S,-}(2) $ |
B:(u,0,w) | $2B_{1}^{S}(2) $ |
Λ:(0,v,0) | $Λ_{1}^{S}(2)⊕Λ_{2}^{S}(2) $ |
U:(0,v,1/2) | $U_{1}^{S}(2)⊕U_{2}^{S}(2) $ |
GP:(u,v,w) | $2GP_{1}^{S}(2) $ |