The continuously infinite group ∞1 is omitted.
Coordinates | Seitz symbol |
---|---|
a, b, c | x, y, z | { 1 ‖ 1 | 0 } |
-a, -b, -c | x, y, z | { 1 ‖ -1 | 0 } |
a, b, c+1/2 | -x, -y, -z | { -1 ‖ 1 | 0 0 1/2 } |
-a, -b, -c+1/2 | -x, -y, -z | { -1 ‖ -1 | 0 0 1/2 } |
a, b, c | -x, y, z | { m ‖ 1 | 0 } |
-a, -b, -c | -x, y, z | { m ‖ -1 | 0 } |
a, b, c+1/2 | x, -y, -z | { 2 ‖ 1 | 0 0 1/2 } |
-a, -b, -c+1/2 | x, -y, -z | { 2 ‖ -1 | 0 0 1/2 } |
WP | Site symmetry | Representative |
---|---|---|
2a | $\ce{^{1}{-1}}\ce{^{\infty m}{1}} $ | (0,0,0 | 0,0,z) |
2b | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ | (0,0,1/4 | 0,0,0) |
2c | $\ce{^{1}{-1}}\ce{^{\infty m}{1}} $ | (0,1/2,0 | 0,0,z) |
2d | $\ce{^{1}{-1}}\ce{^{\infty m}{1}} $ | (1/2,0,0 | 0,0,z) |
2e | $\ce{^{1}{-1}}\ce{^{\infty m}{1}} $ | (1/2,1/2,0 | 0,0,z) |
2f | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ | (1/2,0,1/4 | 0,0,0) |
2g | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ | (0,1/2,1/4 | 0,0,0) |
2h | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ | (1/2,1/2,1/4 | 0,0,0) |
4i | $\ce{^{1}{1}}\ce{^{\infty m}{1}} $ | (a,b,c | 0,0,z) |
Wavevector-k | Little co-group |
---|---|
Γ:(0,0,0) | $\ce{^{1}{-1}}\ce{^{\infty /mm}{1}} $ |
R:(1/2,1/2,1/2) | $\ce{^{1}{-1}}\ce{^{\infty /mm}{1}} $ |
T:(0,1/2,1/2) | $\ce{^{1}{-1}}\ce{^{\infty /mm}{1}} $ |
U:(1/2,0,1/2) | $\ce{^{1}{-1}}\ce{^{\infty /mm}{1}} $ |
V:(1/2,1/2,0) | $\ce{^{1}{-1}}\ce{^{\infty /mm}{1}} $ |
X:(1/2,0,0) | $\ce{^{1}{-1}}\ce{^{\infty /mm}{1}} $ |
Y:(0,1/2,0) | $\ce{^{1}{-1}}\ce{^{\infty /mm}{1}} $ |
Z:(0,0,1/2) | $\ce{^{1}{-1}}\ce{^{\infty /mm}{1}} $ |
GP:(u,v,w) | $\ce{^{m}{-1}}\ce{^{\infty 2}{1}} $ |
Spin Brillouin Zone
k-vector | Ag↑G(2) |
Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ |
R:(1/2,1/2,1/2) | $R_{1}^{S,+}(2) $ |
T:(0,1/2,1/2) | $T_{1}^{S,+}(2) $ |
U:(1/2,0,1/2) | $U_{1}^{S,+}(2) $ |
V:(1/2,1/2,0) | $V_{1}^{S,+}(2) $ |
X:(1/2,0,0) | $X_{1}^{S,+}(2) $ |
Y:(0,1/2,0) | $Y_{1}^{S,+}(2) $ |
Z:(0,0,1/2) | $Z_{1}^{S,+}(2) $ |
GP:(u,v,w) | $GP_{1}^{S}(2) $ |
k-vector | Ag↑G(2) |
Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ |
R:(1/2,1/2,1/2) | $R_{1}^{S,-}(2) $ |
T:(0,1/2,1/2) | $T_{1}^{S,-}(2) $ |
U:(1/2,0,1/2) | $U_{1}^{S,+}(2) $ |
V:(1/2,1/2,0) | $V_{1}^{S,-}(2) $ |
X:(1/2,0,0) | $X_{1}^{S,+}(2) $ |
Y:(0,1/2,0) | $Y_{1}^{S,-}(2) $ |
Z:(0,0,1/2) | $Z_{1}^{S,+}(2) $ |
GP:(u,v,w) | $GP_{1}^{S}(2) $ |
k-vector | Ag↑G(2) |
Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ |
R:(1/2,1/2,1/2) | $R_{1}^{S,-}(2) $ |
T:(0,1/2,1/2) | $T_{1}^{S,+}(2) $ |
U:(1/2,0,1/2) | $U_{1}^{S,-}(2) $ |
V:(1/2,1/2,0) | $V_{1}^{S,-}(2) $ |
X:(1/2,0,0) | $X_{1}^{S,-}(2) $ |
Y:(0,1/2,0) | $Y_{1}^{S,+}(2) $ |
Z:(0,0,1/2) | $Z_{1}^{S,+}(2) $ |
GP:(u,v,w) | $GP_{1}^{S}(2) $ |
k-vector | Ag↑G(2) |
Γ:(0,0,0) | $Γ_{1}^{S,+}(2) $ |
R:(1/2,1/2,1/2) | $R_{1}^{S,+}(2) $ |
T:(0,1/2,1/2) | $T_{1}^{S,-}(2) $ |
U:(1/2,0,1/2) | $U_{1}^{S,-}(2) $ |
V:(1/2,1/2,0) | $V_{1}^{S,+}(2) $ |
X:(1/2,0,0) | $X_{1}^{S,-}(2) $ |
Y:(0,1/2,0) | $Y_{1}^{S,-}(2) $ |
Z:(0,0,1/2) | $Z_{1}^{S,+}(2) $ |
GP:(u,v,w) | $GP_{1}^{S}(2) $ |
k-vector | A↑G(4) | |
Γ:(0,0,0) | $Γ_{1}^{S,+}(2)⊕Γ_{1}^{S,-}(2) $ | |
R:(1/2,1/2,1/2) | $R_{1}^{S,+}(2)⊕R_{1}^{S,-}(2) $ | |
T:(0,1/2,1/2) | $T_{1}^{S,+}(2)⊕T_{1}^{S,-}(2) $ | |
U:(1/2,0,1/2) | $U_{1}^{S,+}(2)⊕U_{1}^{S,-}(2) $ | |
V:(1/2,1/2,0) | $V_{1}^{S,+}(2)⊕V_{1}^{S,-}(2) $ | |
X:(1/2,0,0) | $X_{1}^{S,+}(2)⊕X_{1}^{S,-}(2) $ | |
Y:(0,1/2,0) | $Y_{1}^{S,+}(2)⊕Y_{1}^{S,-}(2) $ | |
Z:(0,0,1/2) | $Z_{1}^{S,+}(2)⊕Z_{1}^{S,-}(2) $ | |
GP:(u,v,w) | $2GP_{1}^{S}(2) $ |