The continuously infinite group ∞1 is omitted.
Coordinates | Seitz symbol |
---|---|
a, b, c | x, y, z | { 1 ‖ 1 | 0 } |
-a, -b, -c | -x, -y, -z | { -1 ‖ -1 | 0 } |
a, b, c | -x, y, z | { m ‖ 1 | 0 } |
-a, -b, -c | x, -y, -z | { 2 ‖ -1 | 0 } |
WP | Site symmetry | Representative |
---|---|---|
1a | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ | (0,0,0 | 0,0,0) |
1b | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ | (0,0,1/2 | 0,0,0) |
1c | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ | (0,1/2,0 | 0,0,0) |
1d | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ | (1/2,0,0 | 0,0,0) |
1e | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ | (1/2,1/2,0 | 0,0,0) |
1f | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ | (1/2,0,1/2 | 0,0,0) |
1g | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ | (0,1/2,1/2 | 0,0,0) |
1h | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ | (1/2,1/2,1/2 | 0,0,0) |
2i | $\ce{^{1}{1}}\ce{^{\infty m}{1}} $ | (a,b,c | 0,0,z) |
Wavevector-k | Little co-group |
---|---|
Γ:(0,0,0) | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ |
R:(1/2,1/2,1/2) | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ |
T:(0,1/2,1/2) | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ |
U:(1/2,0,1/2) | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ |
V:(1/2,1/2,0) | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ |
X:(1/2,0,0) | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ |
Y:(0,1/2,0) | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ |
Z:(0,0,1/2) | $\ce{^{-1}{-1}}\ce{^{\infty m}{1}} $ |
GP:(u,v,w) | $\ce{^{-1}{-1}}\ce{^{\infty}{1}} $ |
Spin Brillouin Zone
k-vector | k-vector-G↑ | A↑G(2) | |
Γ:(0,0,0) | Γ:(0,0,0) | $Γ_{1}^{S}(2) $ | |
R:(1/2,1/2,1/2) | R:(1/2,1/2,1/2) | $R_{1}^{S}(2) $ | |
T:(0,1/2,1/2) | T:(0,1/2,1/2) | $T_{1}^{S}(2) $ | |
U:(1/2,0,1/2) | U:(1/2,0,1/2) | $U_{1}^{S}(2) $ | |
V:(1/2,1/2,0) | V:(1/2,1/2,0) | $V_{1}^{S}(2) $ | |
X:(1/2,0,0) | X:(1/2,0,0) | $X_{1}^{S}(2) $ | |
Y:(0,1/2,0) | Y:(0,1/2,0) | $Y_{1}^{S}(2) $ | |
Z:(0,0,1/2) | Z:(0,0,1/2) | $Z_{1}^{S}(2) $ | |
GP:(u,v,w) | GP:(u,v,w) | $GP_{1}^{S}(2)$ |